Articles | Volume 16, issue 2
https://doi.org/10.5194/hgss-16-51-2025
https://doi.org/10.5194/hgss-16-51-2025
Article
 | 
07 Nov 2025
Article |  | 07 Nov 2025

The role of point discharge in the historical development of atmospheric electricity

Blair P. S. McGinness, R. Giles Harrison, Karen L. Aplin, and Martin W. Airey

Related authors

Atmospheric electricity observations at Eskdalemuir Geophysical Observatory
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 15, 5–16, https://doi.org/10.5194/hgss-15-5-2024,https://doi.org/10.5194/hgss-15-5-2024, 2024
Short summary
Atmospheric electricity observations by Reinhold Reiter around Garmisch-Partenkirchen
R. Giles Harrison and Kristian Schlegel
Hist. Geo Space. Sci., 14, 71–75, https://doi.org/10.5194/hgss-14-71-2023,https://doi.org/10.5194/hgss-14-71-2023, 2023
Short summary
Atmospheric electricity observations at Lerwick Geophysical Observatory
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 13, 133–146, https://doi.org/10.5194/hgss-13-133-2022,https://doi.org/10.5194/hgss-13-133-2022, 2022
Short summary
Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes
R. Giles Harrison
Geosci. Instrum. Method. Data Syst., 11, 37–57, https://doi.org/10.5194/gi-11-37-2022,https://doi.org/10.5194/gi-11-37-2022, 2022
Short summary
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021,https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary

Cited articles

Aplin, K. L.: Atmospheric electricity at Durham: the scientific contributions and legacy of J. A. (“Skip”) Chalmers (1904–1967), Hist. Geo Space. Sci., 9, 25–35, https://doi.org/10.5194/hgss-9-25-2018, 2018. a, b
Belin, R. E.: A Radiosonde Method for Atmospheric Potential Gradient Measurements, Proceedings of the Physical Society, 60, 381–287, https://doi.org/10.1088/0959-5309/60/4/307, 1948. a
Bent, R. B., Collin, H. L., Hutchinson, W. C. A., and Chalmers, J. A.: Space charges produced by point discharge from trees during a thunderstorm, Journal of Atmospheric and Terrestrial Physics, 27, 67–72, https://doi.org/10.1016/0021-9169(65)90062-0, 1965. a
Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale, Environmental Science & Technology, 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, 2020. a
Bologa, A., Paur, H., Seifert, H., and Woletz, K.: Influence of gas composition, temperature and pressure on corona discharge characteristics, International Journal on Plasma Environmental Science & Technology, 5, 110–116, 2011. a
Download
Short summary
Point discharge is an electrical process which occurs naturally in Earth's atmosphere. Like lightning, it has been observed both directly and indirectly for centuries. Several of the milestone investigations in atmospheric electricity have arisen through measuring point discharge. This work gives a history of various investigations involving the phenomenon and explains its central role in developments in atmospheric electricity.
Share