Articles | Volume 13, issue 1
https://doi.org/10.5194/hgss-13-39-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hgss-13-39-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cyclicity in Earth sciences, quo vadis? Essay on cycle concepts in geological thinking and their historical influence on stratigraphic practices
Daniel Galvão Carnier Fragoso
CORRESPONDING AUTHOR
Petrobras, Rio de Janeiro, Brazil
Universidade Federal do Rio Grande do Sul, Instituto de
Geociências, Porto Alegre, Brazil
Matheus Kuchenbecker
Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto
de Ciência e Tecnologia, Centro de Estudos em Geociências,
Laboratório de Estudos Tectônicos, Diamantina, Brazil
Centro de Pesquisas Professor Manoel Teixeira da Costa, Instituto
de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil
Antonio Jorge Campos Magalhães
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade
de Lisboa, Lisbon, Portugal
Universidade Federal do Rio Grande do Norte, Departamento de Geologia, Programa de Pós-Graduação em Geodinâmica e Geofísica (PPGG-LAE), Natal, Brazil
China-Brazil Joint Geoscience Research Center IGGCAS, Beijing, 100029, China
Claiton Marlon Dos Santos Scherer
Universidade Federal do Rio Grande do Sul, Instituto de
Geociências, Porto Alegre, Brazil
Guilherme Pederneiras Raja Gabaglia
Petrobras, Rio de Janeiro, Brazil
André Strasser
Department of Geosciences,
Geology-Paleontology, University of Fribourg, Fribourg, Switzerland
Related authors
No articles found.
Francyne Bochi do Amarante, Juliano Kuchle, Claiton Marlon dos Santos Scherer, Shahin E. Dashtgard, and Maurício Barcelos Haag
Adv. Geosci., 65, 19–35, https://doi.org/10.5194/adgeo-65-19-2024, https://doi.org/10.5194/adgeo-65-19-2024, 2024
Short summary
Short summary
To combat global warming and achieve net-zero CO2 emissions by 2050, Carbon Capture and Storage (CCS) is vital. Despite being a top CO2 emitter globally, Brazil is early in its CCS journey. Our study evaluates the potential of using southern Brazil's saline aquifers for CO2 storage with the aim of supporting Brazil’s efforts to reduce emissions and mitigate climate change. We identify optimal storage sites in two basins, Paraná and Espírito Santo, with ideal locations near existing pipelines.
André Strasser
Clim. Past, 18, 2117–2142, https://doi.org/10.5194/cp-18-2117-2022, https://doi.org/10.5194/cp-18-2117-2022, 2022
Short summary
Short summary
Some 155 million years ago, sediments were deposited in a shallow subtropical sea. Coral reefs formed in a warm and arid climate during high sea level, and clays were washed into the ocean at low sea level and when it rained. Climate and sea level changes were induced by cyclical insolation changes. Analysing the sedimentary record, it appears that sea level rise today (as a result of global warming) is more than 10 times faster than the fastest rise reconstructed from the geologic past.
Related subject area
Research History: Geology
Global tephra studies: role and importance of the international tephra research group “Commission on Tephrochronology” in its first 60 years
Pioneers of the ice age models: a brief history from Agassiz to Milankovitch
The bicentenary of Georg Hartung, a German pioneer geologist, explorer, and illustrator
David J. Lowe, Peter M. Abbott, Takehiko Suzuki, and Britta J. L. Jensen
Hist. Geo Space. Sci., 13, 93–132, https://doi.org/10.5194/hgss-13-93-2022, https://doi.org/10.5194/hgss-13-93-2022, 2022
Short summary
Short summary
The Commission on Tephrochronology (COT), formed in 1961, comprises geoscientists who characterize, map, and date tephra (volcanic ash) layers and use them as stratigraphic linking and dating tools in geological, palaeoenvironmental, and archaeological research. We review COT's origins and growth and show how its leadership and activities – hosting meetings, supporting ECRs, developing new analytical and dating methods, and publishing volumes – have strongly influenced tephrochronology globally.
M. Efe Ateş
Hist. Geo Space. Sci., 13, 23–37, https://doi.org/10.5194/hgss-13-23-2022, https://doi.org/10.5194/hgss-13-23-2022, 2022
Short summary
Short summary
In this article, I trace the history of the models of ice ages during the period between the nineteenth and twentieth century. Some previous versions of ice age models were briefly discussed. I present a bird’s-eye view of the scientific collaboration in developing a model and of the reasons behind the success of the Milankovitch model as well.
Carlos A. Góis-Marques, Miguel Menezes de Sequeira, and José Madeira
Hist. Geo Space. Sci., 12, 217–223, https://doi.org/10.5194/hgss-12-217-2021, https://doi.org/10.5194/hgss-12-217-2021, 2021
Short summary
Short summary
We present a tribute to Georg Friedrich Karl Hartung (1821–1891), a German geologist, on his 200th birthday. He was influenced by eminent 19th century scientific personalities and pioneered geological observations and sampling in the Azores, Madeira, and Canary Islands volcanic archipelagos. Later in his life, he travelled to the USA and explored Scandinavia. His work in Macaronesia is deemed classic, and many have been enriched by his detailed geological illustrations.
Cited articles
Abels, H. A., Kraus, M. J., and Gingerich, P. D.: Precession-scale cyclicity
in the fluvial lower Eocene Willwood Formation of the Bighorn Basin, Wyoming
(USA), Sedimentology, 60, 1467–1483,
https://doi.org/10.1111/sed.12039, 2013.
Adhémar: Révolutions de la Mer: Déluges périodiques, 440
pp.,1860.
Agassiz, L.: Études Sur Les Glaciers, Cambridge University Press, 363
pp., ISBN 9781108049764, 2012.
Ager, D. V.: The new catastrophism: the importance of the rare event in
geological history, Cambridge University Press, Cambridge, 231 pp., ISBN 0521483581, 1993.
Allen, J. R. L.: Asymmetrical ripple marks and the origin of water-laid Cosets of Cross-Strata, Geol. J., 3, 187–236, https://doi.org/10.1002/gj.3350030201, 1962.
Barrell, J.: Rhythms and the measurements of geologic time, GSA Bulletin,
28, 745–904, https://doi.org/10.1130/GSAB-28-745, 1917.
Beckinsale, R. P. and Chorley, R. J.: The History of the Study of Landforms
– Volume 3 (Routledge Revivals): Historical and Regional Geomorphology,
1890–1950, Taylor & Francis, ISBN 978-0415568012, 2003.
Beerbower, J. R.: Cyclothems and Cyclic Depositional Mechanisms in Alluvial
Plain Sedimentation, in: Symposium on cyclic sedimentation, 169, edited by:
Merriam, D. F., Kansas Geological Survey, Kansas Geological Survey, Bulletin 169, United States of America, 31–42,
1964.
Behdad, A.: A step toward the practical stratigraphic automatic correlation
of well logs using continuous wavelet transform and dynamic time warping
technique, J. Appl. Geophys., 167, 26–32,
https://doi.org/10.1016/j.jappgeo.2019.05.007, 2019.
Bellucci, F., Woo, J., Kilburn, C. R., and Rolandi, G.: Ground deformation
at Campi Flegrei, Italy: implications for hazard assessment, Geol. Soc. Lond. Sp. Publ., 269, 141–157,
https://doi.org/10.1144/GSL.SP.2006.269.01.09, 2006.
Berger, A., Loutre, M. F., and Dehant, V.: Astronomical frequencies for
pre-Quaternary palaeoclimate studies, Terra Nova, 1, 474–479, https://doi.org/10.1111/j.1365-3121.1989.tb00413.x, 1989.
Berger, A., Mesinger, F., and Sijacki, D.: Climate Change: Inferences from
Paleoclimate and Regional Aspects, Springer Science & Business Media, 244
pp., 2012.
Bernard, H. A. and Major Jr., C. F.: Recent Meander Belt Deposits of the
Brazos River: An Alluvial, AAPG Bull., 47, 350–350, 1963.
Boulila, S., Laskar, J., Haq, B. U., Galbrun, B., and Hara, N.: Long-term
cyclicities in Phanerozoic sea-level sedimentary record and their potential
drivers, Glob. Planet. Change, 165, 128–136, https://doi.org/10.1016/j.gloplacha.2018.03.004, 2018.
Boulila, S., Haq, B. U., Hara, N., Müller, R. D., Galbrun, B., and
Charbonnier, G.: Potential encoding of coupling between Milankovitch forcing
and Earth's interior processes in the Phanerozoic eustatic sea-level record, Earth-Sci. Rev., 220,
103727, https://doi.org/10.1016/j.earscirev.2021.103727, 2021.
Boutsikas, E. and Ruggles, C.: Temples, stars, and ritual landscapes: the
potential for archaeoastronomy in ancient Greece, Am. J. Archaeol., 115, 55–68, https://doi.org/10.3764/aja.115.1.0055, 2011.
Brodzikowski, K. and van Loon, A. J.: Glacigenic Sediments, Elsevier Science, Amsterdam, 978-0-08-086963-6, 2014.
Cannatelli, C., Spera, F. J., Bodnar, R. J., Lima, A., and De Vivo, B.:
Ground movement (bradyseism) in the Campi Flegrei volcanic area, in:
Vesuvius, Campi Flegrei, and Campanian Volcanism, Elsevier, 407–433,
https://doi.org/10.1016/B978-0-12-816454-9.00015-8, 2020.
Catuneanu, O.: Principles of sequence stratigraphy, 1st edn., Elsevier,
Amsterdam; Boston, 375 pp., 2006.
Catuneanu, O.: Model-independent sequence stratigraphy, Earth-Sci.
Rev., 188, 312–388, https://doi.org/10.1016/j.earscirev.2018.09.017, 2019a.
Catuneanu, O.: Scale in sequence stratigraphy, Mar. Petrol. Geol.,
106, 128–159, https://doi.org/10.1016/j.marpetgeo.2019.04.026,
2019b.
Catuneanu, O. and Zecchin, M.: High-resolution sequence stratigraphy of
clastic shelves II: Controls on sequence development, Mar. Petrol.
Geol., 39, 26–38, https://doi.org/10.1016/j.marpetgeo.2012.08.010, 2013.
Catuneanu, O., Galloway, W. E., Kendall, C. G. S. t. C., Miall, A. D., Posamentier, H. W., Strasser, A., and Tucker, M. E.: Sequence Stratigraphy: Methodology and Nomenclature, nos, 44, 173–245, https://doi.org/10.1127/0078-0421/2011/0011, 2011.
Cecil, C. B.: The concept of autocyclic and allocyclic controls on
sedimentation and stratigraphy, emphasizing the climatic variable, in:
Climate Controls on Stratigraphy, SEPM (Society for Sedimentary Geology),
Special Publication 77, edited by: Cecil, C. B. and Edgar, N. T., United
States of America, 13–20, https://doi.org/10.2110/pec.03.77.0013, 2003.
Chamberlin, T. C.: The Ulterior Basis of Time Divisions and the
Classification of Geologic History, J. Geol., 6, 449–462,
https://doi.org/10.1086/608138, 1898.
Chamberlin, T. C.: Diastrophism as the ultimate basis of correlation,
J. Geol., 17, 685–693, https://doi.org/10.1086/621676, 1909.
Chandler, B. M. P. and Evans, D. J. A.: Glacial Processes and Sediments, in:
Encyclopedia of Geology, Elsevier, 830–856, https://doi.org/10.1016/B978-0-12-409548-9.11902-5, 2021.
Chorley, R. J., Dunn, A. J., and Beckinsale, R. P.: The History of the Study
of Landforms, Vol. 1, Geomorphology Before Davis: Or the Development of
Geomorphology, Routledge, 678 pp., 2009.
Clube, S. V. M. and Napier, W. M.: Galactic dark matter and terrestrial periodicities, Q. J. Roy. Astron. Soc., 37, 618–642, 1996.
Croll, J.: Climate and Time in Their Geological Relations: A Theory of
Secular Changes of the Earth's Climate, D. Appleton, 624 pp., 1875.
Cross, T. A. and Homewood, P. W.: Amanz Gressly's role in founding modern
stratigraphy, GSA Bull., 109, 1617–1630, https://doi.org/10.1130/0016-7606(1997)109<1617:AGSRIF>2.3.CO;2, 1997.
Davis, W. M.: The geographical cycle, Geogr. J., 14, 481–504,
https://doi.org/10.2307/1774538, 1899.
Davis, W. M.: Peneplains and the geographical cycle, GSA Bull., 33,
587–598, https://doi.org/10.1130/GSAB-33-587, 1922.
Dott Jr., R. H.: Episodic sedimentation – how normal is average? How rare is rare? Does it matter?, J. Sediment. Petrol., 53, 5–23,
https://doi.org/10.1306/212F8148-2B24-11D7-8648000102C1865D,
1983.
Dott Jr., R. H.: Chapter 1: An introduction to the ups and downs of
eustasy, in: Eustasy: The Historical Ups and Downs of a Major Geological
Concept, Vol. 180, edited by: Dott Jr., R. H., Geological Society of
America, https://doi.org/10.1130/MEM180-p1, 1992.
Dott, R. H.: Laurence L. Sloss and the Sequence Stratigraphy Revolution, GSA
Today, 24, 24–26, 2014.
Dutton, C. E.: ART. XI. – A Criticism upon the Contractional Hypothesis,
Am. J. Sci. Art., 8, 113–123, https://doi.org/10.2475/ajs.s3-8.44.113, 1874.
Einsele, G.: Sedimentary basins: evolution, facies, and sediment budget,
2nd, completely rev. and enl. ed ed., Springer, Berlin, New York, 792 pp.,
2000.
Emiliani, C.: Pleistocene temperatures, J. Geol., 63,
538–578, https://doi.org/10.1086/626295, 1955.
Emiliani, C.: Paleotemperature analysis of Caribbean cores P6304-8 and
P6304-9 and a generalized temperature curve for the past 425,000 years,
J. Geol., 74, 109–124, https://doi.org/10.1086/627150, 1966.
Emiliani, C., Hudson, J. H., Shinn, E. A., and George, R. Y.: Oxygen and
carbon isotopic growth record in a reef coral from the Florida Keys and a
deep-sea coral from Blake Plateau, Science, 202, 627–629, https://doi.org/10.1126/science.202.4368.627, 1978.
Engel, A. E. J. and Engle, C. B.: Continental accretion and the evolution of
North America, in: Advancing Frontiers in Geology and Geophysics, edited by:
Subramaniam, A. P. and Balakrishna, S., Indian Geophysical Union, Hyderabad,
17–37, 1964.
Esmark, J.: Bidrag til vor jordklodes historie, Magazin for
Naturvidenskaberne, Anden Aargangs förste Bind, Förste Hefte, 3,
28–49, 1824.
Faria, D. L. de P., Tadeu dos Reis, A., and Gomes de Souza, O.:
Three-dimensional stratigraphic-sedimentological forward modeling of an
Aptian carbonate reservoir deposited during the sag stage in the Santos
basin, Brazil, Mar. Petrol. Geol., 88, 676–695, https://doi.org/10.1016/j.marpetgeo.2017.09.013, 2017.
Ferretti, A., Vezzani, F., and Balini, M.: Leonardo da Vinci (1452–1519)
and the birth of stratigraphy, Newsl. Stratigr., 53, 1–17,
https://doi.org/10.1127/nos/2019/0564, 2020.
Fischer, A. G.: The Lofer cyclothem of the Alpine Triassic, in: Symposium on
cyclic sedimentation, 169, edited by: Merriam, D. F., Kansas Geological
Survey, United States of America, 107–149, 1964.
Fischer, A. G.: Climatic oscillations in the bioshere, in: Biotic Crises in
Ecological and Evolutionary Time, edited by: Nitecki, M. H., Academic Press,
103–131, https://doi.org/10.1016/B978-0-12-519640-6.50012-0,
1981.
Fischer, A. G.: Long-term climatic oscillations recorded in Stratigraphy,
in: Climate in Earth History, National Academies Press, Washington, 97–105,
https://doi.org/10.17226/11798, 1982.
Fisher, W. L., Gama Jr., E., and Ojeda, H. A. O.: Estratigrafia sísmica e sistemas deposicionais da Formação Piaçabuçu, XXVII, Congresso Brasileiro de Geologia, Aracaju, 123–134, 1973.
Fisk, H. N., Kolb, C. R., McFarlan, E., and Wilbert, L. J.: Sedimentary
framework of the modern Mississippi delta [Louisiana], J.
Sediment. Res., 24, 76–99, https://doi.org/10.1306/D4269661-2B26-11D7-8648000102C1865D, 1954.
Fragoso, D. G. C., Gabaglia, G. P. R., Magalhães, A. J. C., and Scherer,
C. M. dos S.: Cyclicity and hierarchy in sequence stratigraphy: an
integrated approach, Braz. J. Geol., 51, e20200106, https://doi.org/10.1590/2317-4889202120200106, 2021.
Frodeman, R.: Geological reasoning: Geology as an interpretive and historical
science, GSA Bull., 107, 960–968, https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2,
1995.
Frodeman R.: Hermeneutics in the Field: The Philosophy of Geology, in: The
Multidimensionality of Hermeneutic Phenomenology, Contributions to
Phenomenology, edited by: Babich, B. and Ginev, D., Springer, 69–79,
https://doi.org/10.1007/978-3-319-01707-, 2014.
Gilbert, G. K.: Lake Bonneville, Lake Bonneville, U.S. Government Printing
Office, Washington, DC, https://doi.org/10.3133/m1, 1890.
Gilbert, G. K.: Sedimentary Measurement of Cretaceous Time, J.
Geol., 3, 121–127, https://doi.org/10.1086/607150, 1895.
Glennie, K. W.: Desert sedimentary environments, Elsevier, ISBN 9780080869254, 2010.
Gnibidenko, H. S. and Shashkin, K. S.: Basic principles of the geosynclinal
theory, Tectonophysics, 9, 5–13, https://doi.org/10.1016/0040-1951(70)90025-9, 1970.
Goldhammer, R. K.: Cyclic sedimentation, in: Sedimentology, Springer Berlin
Heidelberg, Berlin, Heidelberg, 271–293, https://doi.org/10.1007/3-540-31079-7_57, 1978.
Grabau, A.: Oscillation or pulsation, 16th International Geological Congress, Washington, Report, 539–552, 1936.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: Geologic Time
Scale 2020, Elsevier, ISBN 9780128243619, 2020.
Gregor, B.: Some ideas on the rock cycle: 1788–1988, Geochim.
Cosmochim. Ac., 56, 2993–3000, https://doi.org/10.1016/0016-7037(92)90285-Q, 1992.
Gressly, A.: Observations géologiques sur le Jura soleurois,
Petitpierre, Imprimerie de Petitpierre, 349 pp., 1838.
Hajek, E. A. and Straub, K. M.: Autogenic Sedimentation in Clastic
Stratigraphy, Annu. Rev. Earth Planet. Sc., 45, 681–709, https://doi.org/10.1146/annurev-earth-063016-015935, 2017.
Hallam, A.: Secular changes in marine inundation of USSR and North America
through the Phanerozoic, Nature, 269, 769–772, https://doi.org/10.1038/269769a0, 1977.
Haq, B. U. and Schutter, S. R.: A chronology of Paleozoic sea-level changes,
Science, 322, 64–68, https://doi.org/10.1126/science.1161648,
2008.
Hawkesworth, C. J. and Brown, M.: Earth dynamics and the development of
plate tectonics, The Royal Society Publishing, https://doi.org/10.1098/rsta.2018.0228, 2018.
Hawkins, G. S.: Stonehenge Decoded, Nature, 200, 306–308, https://doi.org/10.1038/200306a0, 1963.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
Orbit: Pacemaker of the Ice Ages: For 500,000 years, major climatic changes
have followed variations in obliquity and precession, Science, 194,
1121–1132, https://doi.org/10.1126/science.194.4270.1121,
1976.
Hestmark, G.: Jens Esmark's mountain glacier traverse 1823 – the key to his
discovery of Ice Ages, Boreas, 47, 1–10, https://doi.org/10.1111/bor.12260, 2017.
Hilgen, F., Schwarzacher, W., and Strasser, A.: Concept and Definitions in
Cyclostratigraphy (Second Report of the Cyclostratigraphy Working Group):
International Subcommission on Stratigraphic Nomenclature of the IUGS
Commission on Stratigraphy, in: Cyclostratigraphy: Approaches and Case
Histories, vol. 81, edited by: D'Argenio, B., Fischer, A. G., Premoli Silva,
I., Weissert, H., and Ferreri, V., SEPM Soc. Sediment. Geol., 81, 303–305,
https://doi.org/10.2110/pec.04.81.0303, 2004.
Hinnov, L. A.: Cyclostratigraphy and astrochronology in 2018, in:
Stratigraphy & Timescales, Vol. 3, Elsevier, 1–80, https://doi.org/10.1016/bs.sats.2018.08.004, 2018.
Hinnov, L. A. and Park, J.: Detection of astronomical cycles in the
stratigraphic record by frequency modulation (FM) analysis, J.
Sediment. Res., 68, 524–539, https://doi.org/10.2110/jsr.68.524, 1998.
Hockey, T., Trimble, V., Williams, T. R., Bracher, K., Jarrell, R. A.,
Marché, J. D., Palmeri, J., and Green, D. W. E. (Eds.): Biographical
Encyclopedia of Astronomers, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4419-9917-7, 2014.
Holbrook, J. M. and Miall, A. D.: Time in the Rock: A field guide to
interpreting past events and processes from siliciclastic stratigraphy,
Earth-Sci. Rev., 203, 103121, https://doi.org/10.1016/j.earscirev.2020.103121, 2020.
House, M. R.: Orbital forcing timescales: an introduction, Geol.
Soc. Lond. Sp. Publ., 85, 1–18, https://doi.org/10.1144/GSL.SP.1995.085.01.01, 1995.
Huang, X., Griffiths, C. M., and Liu, J.: Recent development in
stratigraphic forward modelling and its application in petroleum
exploration, Austr. J. Earth Sci., 62, 903–919, https://doi.org/10.1080/08120099.2015.1125389, 2015.
Hunt, D. and Tucker, M. E.: Stranded parasequences and the forced regressive
wedge systems tract: deposition during base-level'fall, Sediment. Geol.,
81, 1–9, https://doi.org/10.1016/0037-0738(92)90052-S, 1992.
Husinec, A., Basch, D., Rose, B., and Read, J. F.: FISCHERPLOTS: An Excel
spreadsheet for computing Fischer plots of accommodation change in cyclic
carbonate successions in both the time and depth domains, Comput.
Geosci., 34, 269–277, https://doi.org/10.1016/j.cageo.2007.02.004, 2008.
Illing, L. V.: Bahaman calcareous sands, AAPG Bull., 38, 1–95,
https://doi.org/10.1306/5CEADEB4-16BB-11D7-8645000102C1865D,
1954.
Imbrie, J. and Imbrie, K. P.: Ice ages: solving the mystery, Harvard
University Press, ISBN 0674440757, 1986.
Jamieson, T. F.: On the History of the Last Geological Changes in Scotland, Q. J. Geol. Soc., 21, 161–204, https://doi.org/10.1144/GSL.JGS.1865.021.01-02.24, 1865.
Johnson, M. E.: Chap. 5, A. W. Grabau's embryonic sequence stratigraphy
and eustatic curve, in: Geological Society of America Memoirs, Vol. 180,
Geological Society of America, 43–54, https://doi.org/10.1130/MEM180-p43, 1992.
Karato, S. and Barbot, S.: Dynamics of fault motion and the origin of
contrasting tectonic style between Earth and Venus, Sci. Rep., 8,
1–11, https://doi.org/10.1038/s41598-018-30174-6, 2018.
Kearey, P., Klepeis, K. A., and Vine, F. J.: Global tectonics, John Wiley & Sons, ISBN 978-1-405-10777-8, 2009.
Klein, G. deV and Willard, D. A.: Origin of the Pennsylvanian coal-bearing
cyclothems of North America, Geology, 17, 152–155, https://doi.org/10.1130/0091-7613(1989)017<0152:OOTPCB>2.3.CO;2, 1989.
Kodama, K. P. and Hinnov, L. A.: Rock magnetic cyclostratigraphy,
Wiley-Blackwell, Chichester, West Sussex, UK, ISBN 978-1-118-56128-7, 2015.
Kravitz, G.: The Geohistorical Time Arrow: From Steno's Stratigraphic
Principles to Boltzmann's Past Hypothesis, J. Geosci. Educ.,
62, 691–700, https://doi.org/10.5408/13-107.1, 2014.
Krumbein, W. C. and Dacey, M. F.: Markov chains and embedded Markov chains
in geology, Mathemat. Geol., 1, 79–96, https://doi.org/10.1007/BF02047072, 1969.
Kvale, E. P.: Tides and tidal rhytmites, in: Sedimentology, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1224–1228, https://doi.org/10.1007/3-540-31079-7_238, 1978.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532,
A89, https://doi.org/10.1051/0004-6361/201116836, 2011.
Le Pichon, X.: Fifty years of plate tectonics: Afterthoughts of a witness,
Tectonics, 38,
2919–2933, https://doi.org/10.1029/2018TC005350, 2019.
Li, M., Huang, C., Ogg, J., Zhang, Y., Hinnov, L., Wu, H., Chen, Z.-Q., and
Zou, Z.: Paleoclimate proxies for cyclostratigraphy: Comparative analysis
using a Lower Triassic marine section in South China, Earth-Sci. Rev.,
189, 125–146, https://doi.org/10.1016/j.earscirev.2019.01.011,
2019.
Lima, A., De Vivo, B., Spera, F. J., Bodnar, R. J., Milia, A., Nunziata, C.,
Belkin, H. E., and Cannatelli, C.: Thermodynamic model for uplift and
deflation episodes (bradyseism) associated with magmatic–hydrothermal
activity at the Campi Flegrei (Italy), Earth-Sci. Rev., 97, 44–58,
https://doi.org/10.1016/j.earscirev.2009.10.001, 2009.
Lirer, F. and Iaccarino, S.: Mediterranean Neogene historical stratotype
sections and Global Stratotype Section and Point (GSSP): state of the art,
Ann. Naturhist. Mus. Wien Ser. A, 113, 67–144, 2011.
Lyell, C.: Principles of geology, John Murray, 1835.
Maclaren, C.: The glacial Theory of Prof. Agassiz, Am. J.
Sci. Art., 42, 346–365, 1842.
Magalhães, A. J. C., Raja Gabaglia, G. P., Scherer, C. M. S.,
Bállico, M. B., Guadagnin, F., Bento Freire, E., Silva Born, L. R., and
Catuneanu, O.: Sequence hierarchy in a Mesoproterozoic interior sag basin:
from basin fill to reservoir scale, the Tombador Formation, Chapada
Diamantina Basin, Brazil, Basin Res., 28, 393–432, https://doi.org/10.1111/bre.12117, 2016.
Magalhães, A. J. C., Lima-Filho, F. P., Guadagnin, F., Silva, V. A.,
Teixeira, W. L. E., Souza, A. M., Raja Gabaglia, G. P., and Catuneanu, O.:
Ground penetrating radar for facies architecture and high-resolution
stratigraphy: Examples from the Mesoproterozoic in the Chapada Diamantina
Basin, Brazil, Mar. Petrol. Geol., 86, 1191–1206, https://doi.org/10.1016/j.marpetgeo.2017.07.027, 2017.
Magalhães, A. J. C., Raja Gabaglia, G. P., Fragoso, D. G. C., Bento
Freire, E., Lykawka, R., Arregui, C. D., Silveira, M. M. L., Carpio, K. M.
T., De Gasperi, A., Pedrinha, S., Artagão, V. M., Terra, G. J. S.,
Bunevich, R. B., Roemers-Oliveira, E., Gomes, J. P., Hernández, J. I.,
Hernández, R. M., and Bruhn, C. H. L.: High-resolution sequence
stratigraphy applied to reservoir zonation and characterisation, and its
impact on production performance – shallow marine, fluvial downstream, and
lacustrine carbonate settings, Earth-Sci. Rev., 210, 103325,
https://doi.org/10.1016/j.earscirev.2020.103325, 2020.
Martinez, M., Kotov, S., De Vleeschouwer, D., Pas, D., and Pälike, H.:
Testing the impact of stratigraphic uncertainty on spectral analyses of
sedimentary series, Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, 2016.
Maslin, M.: Forty years of linking orbits to ice ages, Nature, 540,
208–209, https://doi.org/10.1038/540208a, 2016.
Matenco, L. C. and Haq, B. U.: Multi-scale depositional successions in
tectonic settings, Earth-Sci. Rev., 200, 102991, https://doi.org/10.1016/j.earscirev.2019.102991, 2020.
Mazur, A.: Amadeus Grabau in China: 1920–1946, Carbonate. Evaporite.,
21, 51–93, https://doi.org/10.1007/BF03175468, 2006.
Miall, A. D.: Empiricism and model building in stratigraphy: the historical
roots of present-day practices, Stratigraphy, 1, 3–25, 2004.
Miall, A.D.: Updating uniformitarianism: stratigraphy as just a set of
“frozen accidents”, Geological Society of London, Special Publications,
404, 11–36, https://doi.org/10.1144/SP404.4, 2015.
Miall, A. D.: Stratigraphy: A Modern Synthesis, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-319-24304-7,
2016.
Miall, A. D., Holbrook, J. M., Bhattacharya, J. P.: The Stratigraphy
Machine, J. Sediment. Res., 91, 595–610, https://doi.org/10.2110/jsr.2020.143, 2021.
Miall, A. D. and Miall, C. E.: Empiricism and model-building in
stratigraphy: around the hermeneutic circle in the pursuit of stratigraphic
correlation, Stratigraphy, 1, 27–46, 2004.
Middleton, G. V. (Ed.): Primary Sedimentary Structures and their Hydrodynamic Interpretation, SEPM Spec. Publ.,12, 265 pp., 1965.
Middleton, G. V.: Johannes Walther's Law of the Correlation of Facies, GSA
Bull., 84, 979–988, https://doi.org/10.1130/0016-7606(1973)84<979:JWLOTC>2.0.CO;2, 1973.
Middleton, G. V.: Sedimentary geology, in: Sedimentology, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/3-540-31079-7_184, 1978.
Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das
Eiszeitenproblem, Mihaila Ćurčića, Belgrade, 633 pp., 1941.
Mitchell, R. N., Spencer, C. J., Kirscher, U., He, X.-F., Murphy, J. B., Li,
Z.-X., and Collins, W. J.: Harmonic hierarchy of mantle and lithospheric
convective cycles: Time series analysis of hafnium isotopes of zircon,
Gondwana Res., 75, 239–248, https://doi.org/10.1016/j.gr.2019.06.003, 2019.
Mitchum Jr., R. M.: Seismic stratigraphy and global changes of sea level:
Part 11. Glossary of terms used in seismic stratigraphy: Section 2.
Application of seismic reflection configuration to stratigraphic
interpretation, in: Seismic Stratigraphy: Applications to Hydrocarbon
Exploration, edited by: Payton, C. E., AAPG Memoir, 26, 51–52, 1977.
Mitchum Jr., R. M. and Vail, P. R.: Seismic stratigraphy and global changes
of sea level: Part 7. Seismic stratigraphic interpretation procedure:
Section 2. Application of seismic reflection configuration to stratigraphic
interpretation, in: Seismic Stratigraphy: Applications to Hydrocarbon
Exploration, edited by: Payton, C. E., AAPG Memoir, 26, 135–143, 1977.
Moore, R. C.: Stratigraphic classification of the Pennsylvanian rocks of
Kansas, Kansas Geological Survey Bulletin, Tulsa, 22, 256 pp., 1936.
Moore, R. C.: Paleoecological aspects of Kansas Pennsylvanian and Permian
cyclothems, in: Symposium on cyclic sedimentation, 169, edited by:
Merriam, D. F., Kansas Geological Survey, United States of America, 287–380, 1964.
Müller, R. D. and Dutkiewicz, A.: Oceanic crustal carbon cycle drives
26-million-year atmospheric carbon dioxide periodicities, Sci. Adv.,
6, eaaq0500, https://doi.org/10.1126/sciadv.abd0953, 2018.
Montañez, I., Norris, R., MA, C., Johnson, K., MJ, K., Kiehl, J., Kump,
L., Ravelo, A., and KK, T.: Understanding Earth's Deep Past: Lessons for our
Climate Future, The National Academies Press, Washington, DC, ISBN 978-0-309-20919-9, 2011.
Nelson, H.: Kykloi: cyclic theories in ancient Greece, M.S, Portland State
University, United States of America, https://doi.org/10.15760/etd.3256, 1980.
Nagel, E.: The Structure of Science: Problems in the Logic of Scientific
Explanation, Harcourt, Brace & World, United States of America, ISBN 0710018827, 1961.
Nio, S. D., Brouwer, J. H., Smith, D., de Jong, M., and Böhm, A. R.:
Spectral trend attribute analysis: applications in the stratigraphic
analysis of wireline logs, First Break, 23, 71–75, https://doi.org/10.3997/1365-2397.23.4.26503, 2005.
O'Hara, K. D.: A Brief History of Geology, Cambridge University Press,
Cambridge, United Kingdom, https://doi.org/10.1017/9781316809990, 2018.
Oomkens, E. and Terwindt, J. H. J.: Inshore estuarine sediments in the
Haringvliet (Netherlands), Geologie en mijnbouw : orgaan voor officieele
mededelingen van het Geologisch-Mijnbouwkundig Genootschap voor Nederland en
Kolonien, 39, 701–710, 1960.
Paillard, D.: Glacial cycles: toward a new paradigm, Rev. Geophys.,
39, 325–346, https://doi.org/10.1029/2000RG000091, 2001.
Pantopoulos, G., Vakalas, I., Maravelis, A., and Zelilidis, A.: Statistical
analysis of turbidite bed thickness patterns from the Alpine fold and thrust
belt of western and southeastern Greece, Sediment. Geol., 294, 37–57,
https://doi.org/10.1016/j.sedgeo.2013.05.007, 2013.
Parascandola, A. (Ed.): I fenomeni bradisismici del Serapeo di Pozzuoli, Stabilmento tipografico G. Genovese, 117 pp., 1947.
Payton, C. E. (Ed.): Seismic Stratigraphy — Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists, 516 pp., https://doi.org/10.1306/M26490, 1977.
Posarnentier, H. W. and Allen, G. P. (Eds.): Siliciclastic Sequence
Stratigraphy, SEPM (Society for Sedimentary Geology), SEPM (Society for Sedimentary Geology), United States of
America, https://doi.org/10.2110/csp.99.07, 1999.
Peloggia, A. U. G.: The Rock Cycle of the Anthropocene: inserting human
agency into the Earth System, Revista do Instituto Geológico, 39, 1–13,
https://doi.org/10.5935/0100-929x.20180001, 2018.
Posamentier, H. W. and Allen, G. P.: Siliciclastic sequence stratigraphy, Concepts and Applications: SEPM, Concepts in Sedimentology and Paleontology, 7, 210 pp., https://doi.org/10.2110/csp.99.07, 1999.
Posamentier, H. W., Jervey, M. T., and Vail, P. R.: Eustatic Controls on Clastic Deposition I—Conceptual Framework, in: Sea-Level Changes: An Integrated Approach, vol. 42, edited by: Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. V., Ross, C. A., and Kendall, C. G. St. C., SEPM Society for Sedimentary Geology, 109-124, https://doi.org/10.2110/pec.88.01.0109, 1988.
Preston, F. W. and Henderson, J.: Fourier series characterization of cyclic
sediments for stratigraphic correlation, in: Symposium on cyclic
sedimentation, 169, edited by: Merriam, D. F., Kansas Geological Survey,
United States of America, 415–425, 1964.
Puche-Riart, O.: History of Geology up to 1780, in: Encyclopedia of Geology,
Elsevier, 167–172, https://doi.org/10.1016/B0-12-369396-9/00367-1, 2005.
Puetz, S. J.: The Unified Cycle Theory: How Cycles Dominate the Structure of
the Universe and Influence Life on Earth, Outskirts Press, United States of
America, 489 pp., ISBN 9781432712167, 2009.
Purkis, S., Vlaswinkel, B., and Gracias, N.: Vertical-To-Lateral Transitions
Among Cretaceous Carbonate Facies–A Means To 3-D Framework Construction Via
Markov Analysis, J. Sediment. Res., 82, 232–243, https://doi.org/10.2110/jsr.2012.23, 2012.
Rampino, M. R., Caldeira, K., and Zhu, Y.: A pulse of the Earth: A 27.5-Myr
underlying cycle in coordinated geological events over the last 260 Myr,
Geosci. Front., 12, 101245, https://doi.org/10.1016/j.gsf.2021.101245, 2021.
Randall, L. and Reece, M.: Dark Matter as a Trigger for Periodic Comet Impacts, Phys. Rev. Lett., 112, 1–5, https://doi.org/10.1103/PhysRevLett.112.161301, 2014.
Read, J. F. and Goldhammer, R. K.: Use of Fischer plots to define
third-order sea-level curves in Ordovician peritidal cyclic carbonates,
Appalachians, Geology, 16, 895–899, https://doi.org/10.1130/0091-7613(1988)016<0895:UOFPTD>2.3.CO;2, 1988.
Rich, J. L.: Three critical environments of deposition, and criteria for
recognition of rocks deposited in each of them, Geol. Soc.
Am. Bull., 62, 1–20, https://doi.org/10.1130/0016-7606(1951)62[1:TCEODA]2.0.CO;2, 1951.
Richet, P., Henderson, G., and Neuville, D.: Thermodynamics:
The Oldest Branch of Earth Science?, Element, 6, 287–292, https://doi.org/10.2113/gselements.6.5.287, 2010.
Sadler, P.: The influence of hiatuses on sediment accumulation rates, in on
the determination of sediment accumulation rates, GeoResearch Forum, 5,
5–40, 1999.
Sames, B., Wagreich, M., Conrad, C. P., and Iqbal, S.: Aquifer-eustasy as
the main driver of short-term sea-level fluctuations during Cretaceous
hothouse climate phases, Geological Society, London, Special Publications,
498, 9–38, https://doi.org/10.1144/SP498-2019-105, 2020.
Schulz, M. and Schäfer-Neth, C.: Translating Milankovitch climate forcing
into eustatic fluctuations via thermal deep water expansion: a conceptual
link, Terra Nova, 9, 228-231, https://doi.org/10.1111/j.1365-3121.1997.tb00018.x, 1998.
Schwarzacher, W.: Sedimentation models and quantitative stratigraphy,
Elsevier, the Netherlands, 381 pp., ISBN 9780080869315, 1975.
Schwarzacher, W.: Cyclostratigraphy and the Milankovitch Theorym, Elsevier,
the Netherlands, 226 pp., ISBN 9780080869667, 1993.
Schwarzacher, W.: Repetitions and cycles in stratigraphy, Earth-Sci.
Rev., 50, 51–75, https://doi.org/10.1016/S0012-8252(99)00070-7, 2000.
Seranne, M.: Early Oligocene stratigraphic turnover on the west Africa continental margin: a signature of the Tertiary greenhouse-to-icehouse transition?, Terra Nova, 11, 135–140, https://doi.org/10.1046/j.1365-3121.1999.00246.x, 1999.
Shackleton, N.: Oxygen isotope analyses and Pleistocene temperatures
re-assessed, Nature, 215, 15–17, https://doi.org/10.1038/215015a0, 1967.
Shaviv, N. J., Prokoph, A., and Veizer, J.: Is the solar system's galactic
motion imprinted in the Phanerozoic climate?, Sci. Rep., 4, 1–6,
https://doi.org/10.1038/srep06150, 2014.
Shearman, D. J.: Origin of marine evaporites by diagenesis, Transactions of
the Institute of Mining and Metallurgy, Section B, 75, 208–215, 1966.
Shi, B., Chang, X., Liu, Z., Pang, Y., Xu, Y., Mao, L., Zhang, P., and Chen,
G.: Intelligent identification of sequence stratigraphy constrained by
multipopulation genetic algorithm and dynamic time warping technique: A case
study of Lower Cretaceous Qingshuihe Formation in hinterland of Junggar
Basin (NW China), Basin Res., 33, 2517–2544, https://doi.org/10.1111/bre.12567, 2021.
Simons, D. B. and Richardson, E. V.: Resistance to flow in alluvial
channels, Professional Paper, U. S. Govt. Print. Off., 70 pp., https://doi.org/10.3133/pp422J, 1966.
Sloss, L. L.: Sequences in the Cratonic Interior of North America, GSA
Bull., 74, 93–114, https://doi.org/10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2, 1963.
Sloss, L. L., Krumbein, W. C., and Dapples, E. C.: Integrated Facies
Analysis, in: Geological Society of America Memoirs, 39, Geol. Soc.
Am., 39, 91–124, https://doi.org/10.1130/MEM39-p91, 1949.
Stern, R. J. and Scholl, D. W.: Yin and yang of continental crust creation
and destruction by plate tectonic processes, Int. Geol. Rev.,
52, 1–31, https://doi.org/10.1080/00206810903332322, 2010.
Stille, H.: Grundfragen der vergleichenden Tektonik, Nature, 117, 192–192,
https://doi.org/10.1038/117192b0, 1926.
Strasser, A.: Hiatuses and condensation: an estimation of time lost on a
shallow carbonate platform, Depositional Record, 1, 91–117, https://doi.org/10.1002/dep2.9, 2015.
Strasser, A.: Cyclostratigraphy of shallow-marine carbonates–limitations
and opportunities, in: Cyclostratigraphy and Astrochronology, 3, edited by:
Michael Montenari, Elsevier, the Netherlands, 151–187, https://doi.org/10.1016/bs.sats.2018.07.001, 2018.
Strasser, A., Pittet, B., Hillgärtner, H., and Pasquier, J.-B.:
Depositional sequences in shallow carbonate-dominated sedimentary systems:
concepts for a high-resolution analysis, Sediment. Geol., 128, 201–221,
https://doi.org/10.1016/S0037-0738(99)00070-6, 1999.
Strasser, A., Hilgen, F. J., and Heckel, P. H.: Cyclostratigraphy-concepts,
definitions, and applications, Newsl. Stratigr., 42, 75–114,
https://doi.org/10.1127/0078-0421/2006/0042-0075, 2006.
Suess, E.: Das antlitz der erde, F. Tempsky, 1888.
Teichert, C.: Concepts of Facies, AAPG Bull., 42, 2718–2744, https://doi.org/10.1306/0BDA5C0C-16BD-11D7-8645000102C1865D, 1958.
Timothy, R. C.: Log-Linear Models, Markov Chains and Cyclic
Sedimentation, SEPM JSR, 52, 905–912, https://doi.org/10.1306/212F808A-2B24-11D7-8648000102C1865D, 1982.
Udden, J. A.: Geology and mineral resources of the Peoria quadrangle,
Illinois, Bull. Govt. Print. Off., 506, 103 pp., https://doi.org/10.3133/b506, 1912.
Vail, P. R.: Chap. 8, The evolution of seismic stratigraphy and the global
sea-level curve, in: Eustasy: The Historical Ups and Downs of a Major
Geological Concept, edited by: Dott Jr., R. H., Geological Society of
America, 180, 83–92, https://doi.org/10.1130/MEM180-p83, 1992.
Vail, P. R., Mitchum, R. M., and Thompson, S.: Seismic Stratigraphy and
Global Changes of Sea Level, Part 4: Global Cycles of Relative Changes of
Sea Level, in: Seismic Stratigraphy: Applications to Hydrocarbon
Exploration, edited by: Payton, C. E., AAPG Memoir, 26, 83–97, https://doi.org/10.1306/M26490C6, 1977.
Van Houten, F. B.: Cyclic lacustrine sedimentation, upper Triassic Lockatong
formation, central New Jersey and adjacent Pennsylvania, in: Symposium on
cyclic sedimentation, 169, edited by: Merriam, D. F., Kansas Geological
Survey, United States of America, 497–531, 1964.
Van Siclen, D. C.: Depositional topography – examples and theory, AAPG
Bull., 42, 1897–1913, https://doi.org/10.1306/0BDA5B88-16BD-11D7-8645000102C1865D, 1958.
Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., and Rahmanian, V. D.:
Siliciclastic sequence stratigraphy in well logs, cores, and outcrops:
concepts for high-resolution correlation of time and facies, American
Association of Petroleum Geologists, United States of America, https://doi.org/10.1306/Mth7510, 1990.
Vaughan, F.: The Political Philosophy of Giambattista Vico: An Introduction
to La Scienza Nuova, Springer, the Netherlands, https://doi.org/10.1007/978-94-010-2781-6, 1972.
Wagreich, M., Sames, B., Hart, M., and Yilmaz, I. O.: An introduction to
causes and consequences of Cretaceous sea-level changes (IGCP 609),
Geol. Soc. Lond. Sp. Publ., 498, 1–8, https://doi.org/10.1144/SP498-2019-156, 2020.
Walker, J. D., Geissman, J. W., Bowring, S. A., and Babcock, L. E.: The
Geological Society of America geologic time scale, GSA Bull., 125,
259–272, https://doi.org/10.1130/B30712.1, 2013.
Wanless, H. R.: Geology and Mineral Resources of the Alexis Quadrangle,
Illinois State Geological Survey Bulletin, 57, United States of America, 268
pp., ISBN 10 0265850355, 1929.
Wanless, H. R.: Pennsylvanian Section in Western Illinois, GSA Bull., 42,
801–812, https://doi.org/10.1130/GSAB-42-801, 1931.
Wanless, H. R. and Weller, J. M.: Correlation and Extent of Pennsylvanian
Cyclothems, GSA Bull., 43, 1003–1016, https://doi.org/10.1130/GSAB-43-1003, 1932.
Weedon, G. P.: Time-Series Analysis and Cyclostratigraphy: Examining
Stratigraphic Records of Environmental Cycles, 1st edn., Cambridge University
Press, https://doi.org/10.1017/CBO9780511535482, 2003.
Wegener, A.: Die Entstehung der Kontinente und Ozeane, Braunschweig, 94, ISBN 9783443010560,
1915.
Weller, J. M.: Cyclical Sedimentation of the Pennsylvanian Period and Its
Significance, J. Geol., 38, 97–135, https://doi.org/10.1086/623695, 1930.
Weller, J. M.: Rhythms in upper Pennsylvanian cyclothems, Illinois State
Geological Survey Bulletin, 92, United States of America, 1943.
Weller, J. M.: Cyclothems and larger sedimentary cycles of the
Pennsylvanian, J. Geol., 66, 195–207, https://doi.org/10.1086/626494, 1958.
Weller, J. M.: Stratigraphic principles and practice, Harper, United States
of America, 725 pp., 1960.
Weller, J. M.: Development of the concept and interpretation of cyclic
sedimentation, in: Symposium on cyclic sedimentation, 169, edited by:
D.F. Merriam, Kansas Geological Survey, United States of America, 607–621,
1964.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and
Florindo, F.: An astronomically dated record of Earth's climate and its
predictability over the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. V., Ross, C. A., and Kendall, C. G. St. C. (Eds.): Sea-Level Changes: An Integrated Approach, SEPM Society for Sedimentary Geology, 407 pp., 1988.
Willis, B.: Principles of paleogeography, Science, 31, 241–260, https://doi.org/10.1126/science.31.790.241, 1910.
Wilson, J. T.: A new class of faults and their bearing on continental drift,
Nature, 207, 343–347, https://doi.org/10.1038/207343a0, 1965.
Wilson, J. T.: Did the Atlantic close and then re-open?, Nature, 211,
676–681, https://doi.org/10.1038/211676a0, 1966.
Wilson, R. C. L.: Sequence stratigraphy: a revolution without a cause?, Geol. Soc. Lond. Sp. Publ., 143, 303–314, https://doi.org/10.1144/GSL.SP.1998.143.01.20, 1998.
Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J., and
Doré, A. G.: Fifty years of the Wilson Cycle concept in plate tectonics:
an overview, Geol. Soc. Lond. Sp. Publ., 470, 1–17,
https://doi.org/10.1144/SP470-2019-58, 2019.
Zeller, E.J., Cycles and psychology, in: Symposium on cyclic sedimentation,
169, edited by: Merriam, D. F., Kansas Geological Survey, United States of
America, 631–636, 1964.
Short summary
For a long time, human beings have lived with the idea of cycles, as attested by many ancient traditions. This perception led our way of observing and interpreting the most diverse types of phenomena. In the Earth sciences, cyclicity has crucial epistemological value. It offers simple solutions for cause and consequence analysis in time and space. The intention here is to review how such ideas emerged in the geosciences, supporting current stratigraphic principles and practices.
For a long time, human beings have lived with the idea of cycles, as attested by many ancient...