1	Historical Background of Paleo Mega Lake of Rey
2	*Hadi Jarahi ¹ , Donya Namdar ²
3	¹ Department of Earth Sciences, Faculty of Sciences, Islamic Azad University, North Tehran
4	Branch, Tehran, Iran.
5	*Correspondence: <u>Hadijarahi@gmail.com</u>
6	² Department of Geography, Faculty of geology, Damghan University, Damghan, Iran
7	donyanamdar8@gmail.com
8	
9	ABSTRACT
10	Over the past decade, geological and historical evidence has increasingly suggested the
11	existence of a vast ancient lake in central Iran, herein referred to as the Paleo Mega Lake of
12	Rey (PAMELA). This study employs an interdisciplinary methodology to identify and
13	geographically correlate historical references and terminologies associated with the lake. By
14	analyzing over 350 sources, including travelogues, city histories, and ancient religious texts,
15	we reconstructed the probable location, hydrological timeline, and cultural impact of the lake.
16	Findings suggest that PAMELA has been referenced by various historical names such as
17	Faraxkurt and Saveh Lake, and that it significantly influenced the livelihood of ancient
18	communities. The integrated analysis points to a high probability of sustained water presence
19	between 10,000 BCE and the 6th century CE.
20	Keywords: Paleo Mega Lake of Rey, Faraxkurt Lake, Saveh Lake, Historical text, Travelogue.
21	
22	1. Introduction
23	In recent years, growing interest has emerged regarding the hypothesis of a vast paleolake in
24	central Iran referred to herein as the Paleo Mega Lake of Rey (PAMELA). While previous

PAMELA's extent and significance remains absent. This study formulates a testable hypothesis: that a unified pluvial system, historically known under names such as Farakhkurt and Saveh Lake, once occupied a large portion of the central Iranian plateau. Through the integration of geological, paleoclimatic, and historiographical data, we aim to reconstruct this lake's spatial boundaries and assess its long-term impact on regional cultural and ecological systems. Through a multidisciplinary approach involving classical texts, historical accounts, and sedimentary data, we seek to reconstruct the spatial and temporal dynamics of this ancient lake and assess its role in shaping the human history of the region.

Over the last decades, research on ancient and pluvial lakes has demonstrated their global significance for reconstructing past climate and human settlement histories. In North America, classic cases such as Lake Bonneville and Lake Lahontan in the Great Basin have been

significance for reconstructing past climate and human settlement histories. In North America, classic cases such as Lake Bonneville and Lake Lahontan in the Great Basin have been extensively studied through geomorphological mapping and geochronology, showing how moisture fluctuations tied to glacial–interglacial cycles created large, interconnected basins (Chen and Maloof, 2017; Reheis et al., 2014).

In Africa, the most prominent example is Mega-Lake Chad, which during the Holocene African Humid Period expanded to an area of about 360,000 km² and depths exceeding 150 m. Its reconstructed shorelines and sediment cores not only constrain regional hydroclimate variability but also illustrate strong feedbacks between lake extent and the strength of the West African monsoon (Armitage et al., 2015; Ghienne et al., 2002).

In South America, studies of the Andean Altiplano have resolved the Tauca (ca. 16–12 ka) and Minchin (>30 ka) lake phases using a combination of U–Th dating of tufas, sediment cores, and geomorphic analyses (Fornari et al., 2001; Placzek et al., 2006). These examples highlight

how different methodological toolkits ranging from digital elevation models to multiproxy

paleolimnology converge to build precise histories of past hydroclimate.

Within this global framework, Iranian basins occupy a critical position at the climatic intersection of the Mediterranean Westerlies and the Indian Summer Monsoon. Regional studies, including sediment cores from Lake Hamoun (Hamzeh et al., 2016), multiproxy reconstructions from the Jazmurian playa (Vaezi et al., 2019), and nationwide paleohydrological modeling (Shoaee et al., 2023), provide important evidence that Iranian closed basins have repeatedly captured regional moisture anomalies comparable to those in the Great Basin, Sahara–Sahel, and Altiplano.

2. How the Discovery of PAMELA Lake Unfolded

Early geological evidence of lacustrine activity in the Rey region, located south of Tehran, was reported by several researchers (Berberian, 2014; Berberian and Yeats, 2016; Krinsley, 1970; Nazari et al., 2010; Rieben, 1966). These studies described sedimentary formations consistent with ancient shoreline dynamics, yet no integrative framework had been proposed to define the broader basin. This gap was addressed in 2021 when Jarahi introduced the first comprehensive paleolake model, naming it the Paleo Mega Lake of Rey (PAMELA) (Jarahi, 2021b). His approach combined high-resolution digital elevation models from the ALOS PALSAR satellite with geo-historical analyses of ancient texts and regional topography. The reconstructed extent of PAMELA spans not only central Iran but potentially reaches into western Afghanistan and eastern Pakistan. Recent morphometric simulations modeling (Namdar et al., 2025a; Namdar et al., 2025b; Namdar et al., 2025c) suggest that PAMELA was among the largest Holocene lacustrine systems in southwest Asia. While sedimentological data indicate its formation began

in the Late Pleistocene, the lake reached peak levels during the Early Holocene, corresponding to major climatic fluctuations.

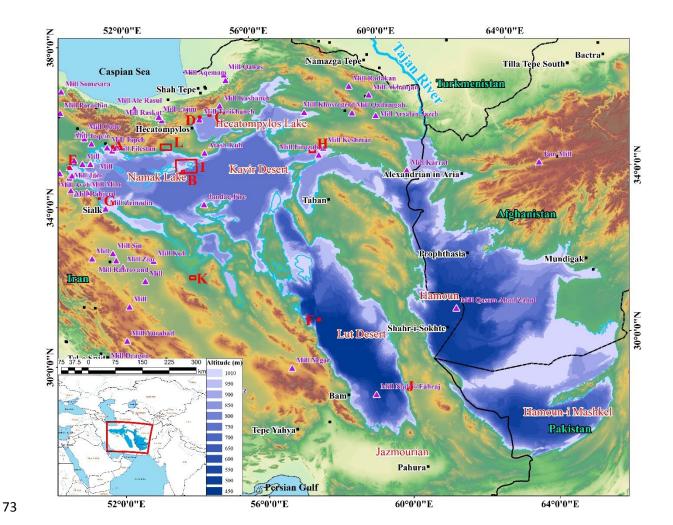


Figure 1: The geographical location of the ancient Lake of Rey is depicted with changing shades from dark to light blue. This lake covered parts of three countries: Iran, Afghanistan, and Pakistan (Jarahi, 2021a). Important deserts are marked in red, and ancient sites are shown in black. Purple triangles represent mill hills. The positions of the mill hills near the lake's shore correspond entirely to ports and shallow coastlines. The given digital elevation data is accurate to 12.5 meters, obtained from the AleosPalsar satellite.

3. Methodology and Analytical Framework

This study employs an interdisciplinary, multi-proxy methodology that integrates paleoclimatic archives, historical textual analysis, geomorphological assessment, and GIS-based spatial modeling to reconstruct environmental transformations in central-eastern Iran during the Holocene. The methodological framework is structured into three interconnected phases:

3.1. Historical Textual Analysis and Semantic Interpretation

A corpus of over 350 historical texts including Islamic-era chronicles, geographical compendia, travel narratives, and Persian epic literature was systematically examined. Key environmental lexemes such as *lakes*, *navigation*, *coasts*, and *fish* were extracted using NVivo v12 to facilitate semantic mapping and thematic clustering. Each textual reference was geotemporally contextualized through cross-dated anchors such as dynastic periods, toponyms, and climatological metaphors, following the methodological protocol outlined by Djamali et al. (Djamali et al., 2018). Ambiguous, anachronistic, or temporally indeterminate entries were excluded to ensure analytical robustness and temporal precision.

3.2. Paleogeographic Reconstruction and Remote Sensing Integration

High-resolution ALOS PALSAR digital elevation models (12.5 m) and multispectral Landsat-8 imagery (2013–2023) were employed to generate elevation models and hydromorphic characterizations across the Haj Aligholi Playa (Lake Hecatompylos (Namdar et al., 2025a)) and the hypothesized paleo mega Lake of Ray. Paleo-shorelines were delineated through slope-break detection along topographic transects and subsequently cross-validated with historical attestations of aquatic transport, ichthyofaunal presence, and littoral habitation. Geospatial referencing of lacustrine features was executed in ArcGIS Pro 3.1 using calibrated elevation bands and verified basemaps. Semantic intersections between spatial datasets and textual

markers (e.g., *boat*, *fish*, *coast*) were integrated into vectorized geodatabases, following the procedures established by Pourali et al. (Pourali et al., 2023).

3.3. Climatic Correlation and Multi-Source Data Synthesis

To synchronize historical narrative data with Holocene climate variability, we incorporated high-resolution paleoclimatic proxies, including speleothem-derived humidity indices from the Zagros Mountains, sediment cores from Lakes Hamoun and Seistan, and regional syntheses by Hamzeh et al. (Hamzeh et al., 2016) Kakroodi et al. (Kakroodi et al., 2015). A diachronic timeline (see Figure 1) overlays inferred relative humidity fluctuations with distinct cultural epochs. Environmental dynamics particularly lake-level variability during the mid-Holocene aridification were interpreted through an integrated lens combining metaphorical textual indicators (e.g., "abundant fish" or "the boat path disappeared") with geospatial and climatological records. Temporal cross-validation ensured alignment between literary motifs and independently established climate transitions.

3.4 Methodological transferability and precedent

The integrated approach employed in this study combining digital elevation models (DEMs) and satellite imagery for paleoshoreline mapping with historical textual evidence and geomorphic observations follows established practices in global paleolake research. For instance, high-resolution DEM and LiDAR analyses have been widely applied to reconstruct strandlines and tectonic deformation in the Lake Bonneville system of the western United States (Baran and Cardenas, 2025; Chen and Maloof, 2017). Multiproxy sediment cores coupled with U–Th chronology have resolved lake phases such as Tauca and Minchin on the Andean Altiplano (Fornari et al., 2001; Placzek et al., 2006). Moreover, geo-historical syntheses combining chronicles with geological evidence have successfully reconstructed

Caspian Sea level fluctuations during the last millennium (Naderi Beni et al., 2013). These precedents demonstrate both the validity of our chosen methods and their portability to other closed-basin systems across Southwest Asia and beyond.

4. Historical Representations of the PAMELA

4.1. Zoroastrian and Cosmological Literature

Ancient Zoroastrian texts, particularly the *Avesta* and the *Bundahishn*, repeatedly refer to a vast, life-sustaining body of water known as *Vourukasha* or *Farakhkurt*. This sacred lake is described as located near the mythical Alborz range and is considered the origin of all terrestrial waters. Later Avestan commentaries and Pahlavi texts also reference the *Kashi Sea* (*Daryā-ye Kāshi*), a water body sometimes interpreted as being in central Iran. Pourdavoud (Hintze, 2009; Pourdavoud, 2015) argue that such references may not be purely mythological but echo older geographic realities. Recent philological and spatial analyses by Oryan (Oryan, 2021) identify linguistic and geographical correspondences between these sacred descriptions and the hypothesized boundaries of the Paleo Mega Lake of Rey (PAMELA), particularly along the southern flanks of the Alborz Mountains.

4.2. Sassanid and Islamic Historiography

Textual sources from the Sassanid era and the early Islamic centuries offer increasingly localized and administrative references to a large inland lake occupying the Rey–Saveh corridor. According to Tarikh-e-Qom (Qomi and Qomi, 1934), during the reign of King Goudarz (91 BCE), a sizable body of water extended between Rey and Saveh. By the 6th century CE, Athar al-Bilad by Qazvini (Qazvini, 1275a) reports that the lake had desiccated. Meanwhile, Kateb (Kateb, 1458) describes the founding of port towns such as Bargīn under Yazdgird II (r. 421–439 CE). These ports linked interior cities such as Meybod and Bideh

which are situated near the 1000-meter elevation and are interpreted as shoreline settlements along the margins of the paleo-lake.

4.3. Modern Travel Accounts and Observational Geography

In the late 19th and early 20th centuries, European geographers and explorers revived interest in the possibility of a large paleolake once spanning the central Iranian plateau. Emmerick and Macuch (Emmerick and Macuch, 2008) reported lacustrine sedimentary layers east of Saveh, consistent with the presence of ancient shoreline activity. The Swedish explorer Sven Hedin (Hedin, 1910a) documented pronounced paleo-shoreline features between Jandagh and Torud and noted that the city gate of Jandagh had been reconstructed using ship timber salvaged from a vessel that had run aground in the vicinity suggesting former navigability. Additional reports by Gabriel (Gabriel, 1939), Siroux (Siroux, 1949a), and Rajabi (Rajabi, 2004) referenced the ruins of long-abandoned port towns such as Barajin, Barjin, and Parchin. Although lacking formal archaeological verification, these observations align closely with geomorphological and sedimentological profiles supporting a historical lacustrine presence in the region.

Table1: Historical Evidence on PAMELA

Name	1	Historical	Probable	
Reference	Source Reference		Location	Type of Evidence
Vourukasha	/ D 11:1	D C	Southern	Religious-
Farakhkurt	Avesta, Bundahishn	Pre-Sassanid	Alborz	geographic
Kashi Sea	Avestan texts,	Pre-Sassanid	Rey-Central	Linguistic-
nasiii sea	Pourdavoud, Spencer		Plateau	interpretive
Lake Saveh	Qomi, Qazvini	Parthian– Islamic	Rey–Saveh	Civic-historical

Name	/ Source	Historical	Probable	Type of Evidence	
Reference	Source	Period	Location	Type of Lividence	
Bargīn Port	Kateb (1458)	Sassanid	East of Yazd	Geo-historical	
"Desert Sea"	Hedin, Gabriel, Rajabi	19th–20th	Jandagh-	Observational-	
Descri Sea	ricum, Gaurier, Kajaur	Century	Torud	geographic	

Curtis (Curtis, 1990) argues that in the expansive arid expanse of the *Great Desert* and the *Lut Desert*, there once extended a vast lake. *Haghighat* (Haghighat, 1962), recounting the history of the city of Semnan, reports that some 2,000 years prior to the Common Era, King *Tahmures* erected the city of *Semnan* on the banks of Lake *Saveh*. He also elucidates the formation of the *Iranian* Plateau, highlighting that the southern lands of *Semnan* once comprised coastlines and plains. *Tarih-e-Qomi* (Qomi, 1934) alludes to an extensive lake spanning from Rey to *Saveh* during the reign of the *Arsacid Kings* (specifically, *Goudarz* in 91 BC). This perspective is further reinforced by the assertions of Strange (Strange, 1930).

Kateb (Kateb, 1458), in reference to *Yazdgird II*, one of the Persian monarchs (reigning from 421 to 439 CE), conveys the following:

Yazdgird commanded three generals: Mibodar, Bidar, and Eqdar. He instructed them to establish three cities. Mibodar founded Mibod, Eqdar established Eqdā, renowned for its association with the Gabars village. Bidar laid the foundations of Bidah. These three cities were served by a port known as Bargīn, located along the shores of Lake Saveh. This port was situated at a distance of 11 Farsangs (an ancient Iranian unit of length equivalent to approximately 6 kilometers) from Yazd (Afshar, 1978).

In his travelogue concerning the deserts of *Iran*, *Hedin* (Hedin, 1910b) provides a more comprehensive account of the characteristics of the ancient lake that once existed in this region compared to other authors. Hedin references ancient *Iranian* texts indicating that during the reign of *Anushiravan* the Sassanid (531-579 CE), the *Gara Chai* River flowed into the

expansive Lake Saveh. He meticulously traced the remnants of the lake's shorelines to the cities of *Jandagh* and *Torud* (Figure 1). Hedin also reveals that the city gate of *Jandaq* was constructed using timber from ships that traversed the Desert Sea, located between *Jandagh* and *Torud*.

In addition to Hedin's early 20th-century geographical observations, subsequent historical and geological studies have further examined the environmental transformations of the Saveh region. The following section highlights the impacts of climatic and tectonic dynamics on the hydrological evolution of Saveh Lake based on modern scientific analyses.

Historical accounts report that Saveh Lake desiccated around 570 CE due to major climatic shifts (Schindler, 1888). Modern geological studies indicate that this event was strongly influenced not only by climatic variability but also by tectonic activities and fluctuations in groundwater levels (Ambraseys and Melville, 1982; Berberian, 1994; Jarahi et al., 2025). Late 19th-century observations by Strange (1893) noted marine fossils and ancient seabed formations in the Saveh Plain, providing physical evidence for a former inland sea. Together with land-use change analyses (Lambton, 1960) and the documented impacts of prolonged droughts (Bosworth, 1976; Browne, 1893), these findings present a complex environmental history of the Saveh region over the past two millennia.

Zakariya Qazvini, in "Athar al-Bilad" and "Akhbar al-'Ibad" (Qazvini et al., 1330; Qazvini, 1275b), recounts, "In ancient times, there was a lake near Saveh that desiccated and transformed into arable land around the time of the birth of the Holy Prophet Muhammad (the last Prophet of Islam, 550-570 CE)."

Likewise, *Siroux* (Siroux, 1949b) postulates that Lake *Saveh* had desiccated by the time of the birth of the last Prophet of Islam. *Eghtedari* (Eghtedari, 2022) corroborates *Sirouxs'* assertions regarding the period of the lake's desiccation. In the book "*Tariqh-e-Qomi*" (Qomi, 1934), based on *Okhravi and Djamal* (Okhravi and Djamali, 2003), there are mentions of Lake

Saveh and its desiccation. Additionally, it is reported that Lake Saveh was refilled in 1886 CE, according to a report from Sadid-o Saltaneh, an official from the late Qajar period, and this was reiterated two years later by Ein al-Dawla King (Persia, 1888).

Gabriel (Gabriel, 1939) provides invaluable insights into the details of a lake situated in the current location of the Central Desert (Great Desert). He recounts stories depicting the desert as an expanse resembling a sea with ships, ports, and lighthouses, among other elements. Other researchers have also made references to ports known by various names such as "Barghin," "Barjin," "Barajin," and "Parchin" (Pirniya and Afsar, 1991). Rajabi identifies the two cities of Jandagh and Torud as two forgotten ports in the desert (Rajabi, 2004).

4.4. Holocene Climatic Context and Its Implications for Saveh Lake Dynamics

Holocene climate variability exerted a decisive influence on the hydrological evolution and human occupation of the Central Iranian Plateau. Paleoclimatic records identify several major climate anomalies namely, the Younger Dryas (~12,900–11,700 BP), the 8.2 ka cooling event (~8,200 BP), and the 4.2 ka aridification (~4,200 BP) each corresponding to marked decreases in water availability and adaptive shifts in human settlement patterns(Alley et al., 1997; Mayewski et al., 2004; Weiss et al., 1993). In contrast, the Early Holocene Humid Period (~11,700–8,200 BP) and the Mid-Holocene Climatic Optimum (~8,000–5,500 BP) are characterized by increased effective moisture, promoting lacustrine expansion and cultural development (Wanner et al., 2008). Recent reconstructions by Vaezi et al. (Vaezi et al., 2025), based on isotopic, palynological, and sedimentary proxies from the Halil Rud and Zeribar Lake regions, highlight the Early–Mid Holocene as a period of maximal Quaternary wetness in central Iran. This aligns temporally with the modeled peak stages of the Paleo Mega Lake of Rey (PAMELA), supporting a climatic foundation for its development and persistence.

Notably, the proposed drying phase of Saveh Lake around the 6th century CE temporally coincides with historical accounts linking the lake's disappearance to the birth of the Prophet Muhammad (circa 570 CE). This narrative, cited in early Islamic historiography, may align with broader climatic disruptions occurring during the Late Antique Little Ice Age (LALIA), dated between ~536 and ~660 CE (Büntgen et al., 2016). The LALIA was marked by sustained volcanic forcing, solar minima, and widespread famines across Eurasia, including the notable great famine of 570 CE. While causality cannot be directly confirmed, the synchronicity of paleohydrological regression and socioreligious historical memory suggests that the desiccation of Saveh Lake may have been part of a broader regional environmental crisis.

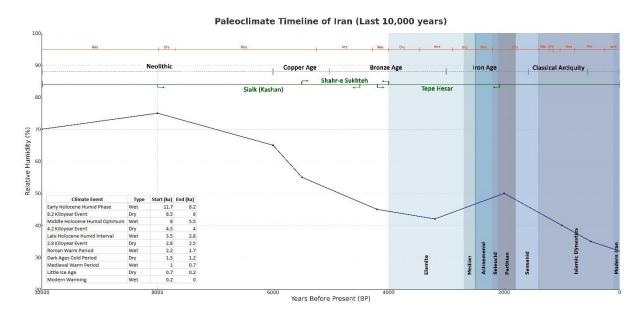


Figure 2: Integrated timeline of Holocene climatic events, major historical periods in Iran, hydrological changes in PAMELA Lake, geological activity, and historical evidence.

Climatic data are based on Wanner et al. (2011), Mayewski et al. (2004), and Büntgen et al. (2016); dynastic periods follow (Frye, 1962) and (Axworthy, 2007); and historical-geological evidence derives from Qazvini (1275), (Persia, 1888), (Strange, 1893), Schindler (1888),

Berberian (1995), and Ambraseys & Melville (1982).

In addition to textual and geomorphological evidence, this study acknowledges a corpus of ethnographic interviews collected across regions such as Damghan (Rashm), Jandagh, Bam (Borouat), Qarchak, Saveh, and Kashan. In these interviews, local elders recounted ancestral memories of inland navigation and fishing practices, often transmitted across generations. While these narratives remain anecdotal and require systematic folkloristic verification, their spatial alignment with the hypothesized PAMELA basin warrants further interdisciplinary investigation.

4.5. Contextualizing PAMELA within global paleolake research

Our reconstruction of the Paleo Mega Lake of Rey (PAMELA) not only provides new insights into the hydrological and cultural history of central Iran but also contributes to broader debates on the role of pluvial basins in shaping human—environment interactions. Similar to the Great Basin lakes of North America (Reheis et al., 2014), Mega-Lake Chad in Africa (Armitage et al., 2015; Li et al., 2023), and the Altiplano lakes of South America (Placzek et al., 2006), PAMELA illustrates how closed-basin hydrosystems can expand dramatically in response to climatic oscillations and then contract, leaving behind enduring geomorphic and cultural legacies. By situating Iranian evidence within this comparative framework, the study highlights both the methodological portability of our approach and the importance of Iran as a climatic crossroads between the Mediterranean Westerlies and the Indian Summer Monsoon.

5. Conclusion

This study, grounded in a robust interdisciplinary framework encompassing textual historiography, sedimentology, and paleoclimatology, reconstructs the probable existence of an extensive inland lake system across central Iran, hereafter referred to as the Paleo Mega Lake of Rey (PAMELA). Geological correlations and historical cross-referencing suggest that

this pluvial system may have originated during the terminal Pleistocene and expanded across

the Rey–Dasht-e Lut corridor throughout much of the Holocene.

The confluence of Zoroastrian cosmogonic descriptions, Sassanid and Islamic-era geographies,

and modern observational reports with present-day digital topography delineates a hydrological

continuum with far-reaching impacts on regional settlement patterns, land use, and cultural

276 memory.

273

274

275

277

278

279

280

281

282

283

284

285

286

287

288

289

290

It should be noted that the scattered sedimentological datasets obtained from basins such as

Jazmurian and Hamoun may, in fact, represent fragments of a larger paleo-lacustrine puzzle

namely, the PAMELA system. Although these records have been independently analyzed

within their respective local contexts, their cumulative implications strongly and implicitly

affirm the existence of a unified and extensive lake structure.

From a paleoclimatic perspective, the synchrony between elevated Holocene effective moisture

intervals and the expansion of this basin, alongside the abrupt regressions associated with the

4.2 ka aridification event, further substantiate the lake's temporal dynamics. This study not

only strengthens the empirical foundations of PAMELA's hypothesis but also signals the

necessity of revisiting Central Iran's environmental and civilizational narratives. Future

investigations should prioritize stratigraphic coring, radiometric dating, and high-resolution

terrain modeling to derive a definitive reconstruction of the PAMELA system.

Acknowledgment

- I am grateful to Dr. Saeed Oryan at Tehran University is appreciated for his valuable advice
- and guidance in locating the names of his book.
- 292 Author Contributions: H.J.: formal analysis, fieldwork, methodology, D.N.: investigation,
- and writing the manuscript.

294 **Funding:** This research received no external funding. **Conflicts of Interest:** The authors declare that the research was conducted in the absence of 295 any commercial or financial relationships that could be construed as a potential conflict of 296 297 interest. References 298 Afshar, I., 1978. New History of Yazd. Publications of Farhang-e Iran Zamin, Tehran, Iran 299 (in Persian), 320 pp. 300 301 Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C. and Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 302 303 25(6): 483-486. Ambraseys, N.N. and Melville, C.P., 1982. A History of Persian Earthquakes. Cambridge 304 University Press, Cambridge, 1, 219 pp. 305 306 Armitage, S.J., Bristow, C.S. and Drake, N.A., 2015. West African monsoon dynamics 307 inferred from abrupt fluctuations of Lake Mega-Chad. Proceedings of the National Academy of Sciences, 112(28): 8543-8548. 308 Axworthy, M., 2007. Empire of the Mind: A History of Iran. Hurst, 333 pp. 309 Axworthy, M., 2008. Iran: Empire of the mind: A history from Zoroaster to the present day. 310 Penguin UK. 311 Baran, Z.J. and Cardenas, B.T., 2025. Modeling Lake Bonneville paleoshoreline erosion at 312 Mars-like rates and durations: Implications for the preservation of erosional Martian 313 shorelines and viability as evidence for a Martian ocean. Journal of Geophysical 314 Research: Planets, 130(4): e2024JE008851. 315 316 Berberian, M., 1994. Natural hazards and the first earthquake catalogue of Iran, 1.

International Institute of Earthquake Engineers and Seismology, 603 pp.

318 Berberian, M., 2014. Earthquake and Coseismic Surface Faulting on the Iranian Plateau; a Historical, Social, and Physical Approach. Elsevier, 770 pp. 319 Berberian, M. and Yeats, R.S., 2016. Tehran: An Earthquake Time Bomb; In Tectonic 320 Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel 321 Berberian's Forty-Five Years of Research Contributions. The Geological Society of 322 America, 1(Special Paper 525): 84. 323 Bivar, A.D.H., 1983. The political history of Iran under the Arsacids. Cambridge History of 324 Iran, 3(1): 21-99. 325 326 Bosworth, C.E., 1976. The City Walls of Sāva (ancient Sāwah) and Their Date. Iran, 14(1): 69-74. 327 Briant, P., 2002. From Cyrus to Alexander: a history of the Persian Empire. Penn State Press. 328 329 Browne, E.G., 1893. A Year Amongst the Persians: Impressions as to the Life, Character & 330 Thought of the People of Persia. A. and C. Black Publishers, London, 594 pp. Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., 331 Jungclaus, J., Wagner, S., Krusic, P.J. and Esper, J., 2016. Cooling and societal 332 change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature 333 geoscience, 9(3): 231-236. 334 Chen, C.Y. and Maloof, A.C., 2017. Revisiting the deformed high shoreline of Lake 335 Bonneville. Quaternary Science Reviews, 159: 169-189. 336 337 Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. and Pachur, H.J., 1999. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. 338 339 Geophysical research letters, 26(14): 2037-2040. Curtis, J., 1990. Ancient Persia. Harvard University Press, British Museum, 72 pp. 340

Daryaee, T., 2023. Sasanian Persia.

342 Djamali, M., Gondet, S., Ashjari, J., Aubert, C., Brisset, E., Longerey, J., Marriner, N., Mashkour, M., Miller, N.F. and Naderi-Beni, A., 2018. Karstic spring wetlands of the 343 Persepolis Basin, southwest Iran: unique sediment archives of Holocene 344 environmental change and human impacts. Canadian journal of earth sciences, 55(10): 345 1158-1172. 346 Dyson, R.H. and Howard, S.M., 1989. Tappeh Hesār: Reports of the Restudy Project, 1976. 347 348 Casa editrice Le Lettere. Eghtedari, A., 2022. Sadid Alsaltaneh Travel Book. Sokhan, Tehran, Iran, 739 pp. 349 350 Emmerick, R.E. and Macuch, M., 2008. The Literature of Pre-Islamic Iran: Companion Volume I. Bloomsbury Academic, 448 pp. 351 Fagan, B.M., 2005. The long summer: how climate changed civilization. Basic books. 352 353 Fornari, M., Risacher, F. and Féraud, G., 2001. Dating of paleolakes in the central Altiplano of Bolivia. Palaeogeography, palaeoclimatology, palaeoecology, 172(3-4): 269-282. 354 Frye, R.N., 1962. The Heritage of Persia. World Publishing Company, Cleveland, 514 pp. 355 Gabriel, A., 1939. Aus den Einsamkeiten Irans. Strecker und Schroder Verlag, Stuttgart, 356 Germany 186 pp. 357 Geyh, M.A., Grosjean, M., Núnez, L. and Schotterer, U., 1999. Radiocarbon Reservoir Effect 358 and the Timing of the Late-Glacial/Early Holocene Humid Phase in the Atacama 359 Desert (Northern Chile). Quaternary Research, 52: 143-153. 360 361 Ghienne, J.-F., Schuster, M., Bernard, A., Duringer, P. and Brunet, M., 2002. The Holocene giant Lake Chad revealed by digital elevation models. Quaternary International, 362 87(1): 81-85. 363 364 Ghirshman, R., 1938. Fouilles de Sialk près de Kashan 1933, 1934, 1937. [Paris] Musée [national] du Louvre. Département des antiquités orientales [et de la céramique 365 antique] Série archéologique, t. IV. P. Geuthner, [Paris], 2 v. pp. 366

367 Grainger, J.D., 2014. Seleukos Nikator (Routledge Revivals): Constructing a Hellenistic Kingdom. Routledge. 368 Gropp, G., 1998. The development of Near Eastern culture during the Persian Empire. 369 370 Sydney Studies in Religion. Grove, J.M., 2001. The initiation of the Little Ice Age in regions round the North Atlantic. 371 Climatic change, 48(1): 53-82. 372 373 Haghighat, A., 1962. The History of Semnan. Etelaat Publication, Tehran, Iran (in Persian), 236 pp. 374 375 Hamzeh, M.A., Mahmudy-Gharaie, M.H., Alizadeh-Lahijani, H., Moussavi-Harami, R., Djamali, M. and Naderi-Beni, A., 2016. Paleolimnology of Lake Hamoun (E Iran): 376 Implication for past climate changes and possible impacts on human settlements. 377 378 Palaios, 31(12): 616-629. Hedin, S.A., 1910a. Overland to India. Macmillan and Company, limited. 379 Hedin, S.A., 1910b. Overland to India. Macmillan and Company, limited, 772 pp. 380 381 Helama, S., Jones, P.D. and Briffa, K.R., 2017. Dark Ages Cold Period: A literature review and directions for future research. The Holocene, 27(10): 1600-1606. 382 Hintze, A., 2009. Avestan Literature. In: Ehsan Yarshater (ed.), The Literature of Pre-Islamic 383 Iran: Companion Volume I, London & New York: I.B. Tauris in association with The 384 Ehsan Yarshater Center for Iranian Studies, 1. Columbia University. 385 386 Jarahi, H., 2021a. Paleo Mega Lake of Rey Identification and Reconstruction of Quaternary Lake in Central Iran. Open Quaternary, 7(1): 1-15. 387 Jarahi, H., 2021b. Paleo Mega Lake of Rey Identification and Reconstruction of Quaternary 388

Lake in Central Iran. Open Quaternary, 7(1): 1-15.

390 Jarahi, H., Abdollahi, M., Aboutalebi, H. and Khosronezhad, A., 2025. Investigating the effects of active tectonics on rockfall susceptibility along the mountain sector of 391 Chalus Highway. Pure and Applied Geophysics: 10. 392 393 Kakroodi, A., Leroy, S., Kroonenberg, S., Lahijani, H., Alimohammadian, H., Boomer, I. and Goorabi, A., 2015. Late Pleistocene and Holocene sea-level change and coastal 394 paleoenvironment evolution along the Iranian Caspian shore. Marine Geology, 361: 395 396 111-125. Kateb, A.e.H.e.A., 1458. History of Yazd. Publications of Farhang-e Iran Zamin, Tehran, 397 398 Iran (in Persian), 328 pp. Kennedy, H., 2022. The Prophet and the age of the Caliphates: the Islamic Near East from the 399 sixth to the eleventh century. Routledge. 400 401 Krinsley, D.B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of 402 Iran, Air Force Cambridge Research Labs. Kristiansen, K. and Larsson, T.B., 2005. The rise of Bronze Age society: travels, 403 transmissions and transformations. Cambridge University Press. 404 Lambton, A.K.S., 1960. Landlord and Peasant in Persia: A Study of Land Tenure and Land 405 Revenue Administration. University of California Press, Berkeley, 410 pp. 406 Li, Y., Kino, K., Cauquoin, A. and Oki, T., 2023. Contribution of lakes in sustaining the 407 Sahara greening during the mid-Holocene. Climate of the Past, 19(10): 1891-1904. 408 409 Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G. and Ni, F., 2009. Global signatures and dynamical origins of the 410 Little Ice Age and Medieval Climate Anomaly. science, 326(5957): 1256-1260. 411 412 Marchant, R. and Hooghiemstra, H., 2004. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews, 413 66(3-4): 217-260. 414

415 Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L. and Gomis, M., 2021. Climate change 2021: the physical 416 science basis. Contribution of working group I to the sixth assessment report of the 417 intergovernmental panel on climate change, 2(1): 2391. 418 Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlén, W., Maasch, K.A., David Meeker, L., 419 Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, 420 421 G., Rack, F., Staubwasser, M., Schneider, R.R. and Steig, E.J., 2004. Holocene climate variability. Quaternary Research, 62(3): 243-255. 422 423 McCormick, M., Büntgen, U., Cane, M.A., Cook, E.R., Harper, K., Huybers, P., Litt, T., Manning, S.W., Mayewski, P.A. and More, A.F., 2012. Climate change during and 424 after the Roman Empire: reconstructing the past from scientific and historical 425 426 evidence. Journal of Interdisciplinary History, 43(2): 169-220. Naderi Beni, A., Lahijani, H., Mousavi Harami, R., Arpe, K., Leroy, S., Marriner, N., 427 Berberian, M., Andrieu-Ponel, V., Djamali, M. and Mahboubi, A., 2013. Caspian sea-428 level changes during the last millennium: historical and geological evidence from the 429 south Caspian Sea. Climate of the Past, 9(4): 1645-1665. 430 Namdar, D., Jarahi, H. and Maghami Moghim, G., 2025a. Introduction to Hecatompylos 431 Lake in Damghan, 17th Conference of the Iranian Paleontological Society, 432 Hormozgan University, pp. 8. 433 434 Namdar, D., Jarahi, H. and Maghami Moghim, G., 2025b. Paleo Mega Lake of Rey, An Introduction to Water Level-Volume Changes Over Time from a Morphological 435 Perspective, 7th International Conference of Biology and Earth Science, Hamadan, 436 437 pp. 1-9.

Namdar, D., Jarahi, H. and Maghami Moghim, G., 2025c. Paleo Mega Lake of Rey, North 438 Yazd Paleoshoreline Sedimentology, 9th Symposium of Sedimentological Society of 439 440 Iran, Tabas, pp. 1-10. Nazari, H., Ritz, J.-F., Salamati, R., Shahidi, A., Habibi, H., Ghorashi, M. and Karimi 441 Bavanpur, A., 2010. Distinguishing between fault scarps and shorelines: the question 442 of the nature of the Kahrizak, North Rey and South Rey features in the Tehran plain 443 444 (Iran). Terra Nova, 22(3): 227–237. Okhravi, R. and Djamali, M., 2003. The missing ancient Lake of Saveh; a historical review. 445 446 T. Iranica Antiqua, 38: 327-344. Oryan, S., 2021. Bundahishn, Transcription, translation, notes based on the version number 447 (1) of Tammors Dinshah TD1, 1. Barsam, Tehran, 670 pp. 448 449 Persia, S.o., 1888. On the New Lake between Kom and Teherân. Proceedings of the Royal Geographical Society and Monthly Record of Geography, 10(10): 624-632. 450 Pirniya, K. and Afsar, K., 1991. Road and Robats. National Antiquities Protection 451 Organization of Iran, Tehran, Iran, 220 pp. 452 Placzek, C., Patchett, P.J., Quade, J. and Wagner, J.D., 2006. Strategies for successful U-Th 453 dating of paleolake carbonates: An example from the Bolivian Altiplano. 454 Geochemistry, Geophysics, Geosystems, 7(5). 455 Potts, D.T., 2016. The archaeology of Elam: formation and transformation of an ancient 456 Iranian state. Cambridge University Press. 457 Pourali, M., Sepehr, A., Hosseini, Z. and Hamzeh, M.A., 2023. Sedimentology, 458 459 geochemistry, and geomorphology of a dry-lake playa, NE Iran: implications for paleoenvironment. Carbonates and Evaporites, 38(1): 9. 460

Pourdavoud, E., 2015. Yasht's. The Avesta, 1. Asatir, Tehran, Iran, 626 pp.

- 462 Qazvini, F.H.A.M., Browne, E.G. and Nicholson, R.A., 1330. The Ta'ríkh-I-Guzída; Or,
- Select History of Hamdulláh Mustawfí-I-Qazwíní, Compiled in A.H. 730 (A.D.
- 464 1330), and Now Reproduced in Fac-Simile from a Ma. Creative Media Partners, LLC,
- 465 556 pp.
- 466 Qazvini, Z.M., 1275a. Āthār al-Bilād wa-Akhbār al-'Ibād, 600 pp.
- 467 Qazvini, Z.M., 1275b. Āthār al-Bilād wa-Akhbār al-'Ibād, 667 pp.
- 468 Qomi, H.A. and Qomi, H.M., 1934 Tarix-I Qum, 1. Tus, Tehran, 400 pp.
- 469 Qomi, S.D.M.M.H.H., 1934. Tarix-I Qum, 1. Tus, Tehran, 874 pp.
- Rajabi, P., 2004. Jandagh and Trudeau: Two forgotten ports of the Great Salt Desert, 1.
- 471 Pezhvak Keyvan, Iran, 142 pp.
- 472 Rashidvash, V., 2012. Iranian people and the race of people settled in the Iranian plateau.
- 473 Research Journal of Humanities and Social Sciences, 3(4): 426-435.
- Reheis, M.C., Adams, K.D., Oviatt, C.G. and Bacon, S.N., 2014. Pluvial lakes in the Great
- Basin of the western United States—a view from the outcrop. Quaternary Science
- 476 Reviews, 97: 33-57.
- Rieben, E.H., 1966. Geological observations on alluvial deposits in northern Iran. Geol.
- 478 Survey. Iran, 9: 39.
- Roberts, B.W. and Thornton, C.P., 2014. Archaeometallurgy in global perspective. Springer.
- Rohling, E., Mayewski, P., Abu-Zied, R., Casford, J. and Hayes, A., 2002. Holocene
- atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Climate
- 482 Dynamics, 18(7): 587-593.
- Schindler, A., 1888. Reisen in Persien: Erlebnisse und Beobachtungen aus den Jahren 1870–
- 484 1885. Gotha, Germany: Justus Perthes Verlag, 488 pp.

485	Shoaee, M.J., Breeze, P.S., Drake, N.A., Hashemi, S.M., Nasab, H.V., Breitenbach, S.F.,
486	Stevens, T., Boivin, N. and Petraglia, M.D., 2023. Defining paleoclimatic routes and
487	opportunities for hominin dispersals across Iran. PLoS One, 18(3): e0281872.
488	Siroux, M., 1949a. Caravansérails d'Iran et petites constructions routières, 1. Caravansérails
489	d'Iran et petites constructions routières, 600 pp.
490	Siroux, M., 1949b. Caravansérails d'Iran et petites constructions routières. Institut Français
491	d'Archéologie Orientale, 600 pp.
492	Staubwasser, M., Sirocko, F., Grootes, P.M. and Segl, M., 2003. Climate change at the 4.2 kg
493	BP termination of the Indus valley civilization and Holocene south Asian monsoon
494	variability. Geophysical Research Letters, 30(8).
495	Strange, G.L., 1893. The Lands of the Eastern Caliphate: Mesopotamia, Persia, and Central
496	Asia, from the Moslem Conquest to the Time of Timur. University Press, Cambridge
497	University Press, 580 pp.
498	Strange, G.L., 1930. The Lands of the Eastern Caliphate: Mesopotamia, Persia, and Central
499	Asia, from the Moslem Conquest to the Time of Timur. University Press, 592 pp.
500	Vaezi, A., Djamali, M., Tavakoli, V. and Naderi Beni, A., 2025. Paleoenvironmental and
501	Paleoclimatic Changes and their Reciprocal Effects on Ancient Settlements in
502	Southern Iran, with a Focus on the Halil Rud Cultural Zone, from 4000 to 2900 Years
503	Ago. pazhoheshha-ye Bastan shenasi Iran, 14(43): 37-63.
504	Vaezi, A., Ghazban, F., Tavakoli, V., Routh, J., Beni, A.N., Bianchi, T.S., Curtis, J.H. and
505	Kylin, H., 2019. A Late Pleistocene-Holocene multi-proxy record of climate
506	variability in the Jazmurian playa, southeastern Iran. Palaeogeography,
507	palaeoclimatology, palaeoecology, 514: 754-767.

508	Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H.,
509	Grosjean, M., Joos, F. and Kaplan, J.O., 2008. Mid-to Late Holocene climate change:
510	an overview. Quaternary Science Reviews, 27(19-20): 1791-1828.
511	Weiss, H. and Bradley, R.S., 2001. What drives societal collapse? Science, 291(5504): 609-
512	610.
513	Weiss, H., Courty, MA., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R. and
514	Curnow, A., 1993. The genesis and collapse of third millennium north Mesopotamian
515	civilization. Science, 261(5124): 995-1004.
516	Zeder, M.A., 2009. The Neolithic macro-(r) evolution: macroevolutionary theory and the
517	study of culture change. Journal of Archaeological research, 17(1): 1-63.
518	
519	

Appindix A: Chronological and Bibliographic Sources Supporting the Integrated Timeline (Figure 2) (Detailed references for climatic events, cultural periods, archaeological sites, and dynastic successions as (Detailed references for climatic events, cultural periods, archaeological sites, and dynastic successions as presented in the spatio-temporal reconstruction of Paleo Mega Lake of Rey)

Climate Event	Start (ka)	End (ka)	Reference
Early Holocene Humid Phase (Wet)	11.7	8.2	(Geyh et al., 1999; Weiss and Bradley, 2001)
8.2 Kiloyear Event (Dry)	8.5	8	(Rohling et al., 2002)
Middle Holocene Humid Optimum (Wet)	8	5.5	(Claussen et al., 1999)
4.2 Kiloyear Event (Dry)	4.5	4	(Weiss and Bradley, 2001)
Late Holocene Humid Interval (Wet)	3.5	2.8	(Marchant and Hooghiemstra, 2004)
2.8 Kiloyear Event (Dry)	2.8	2.5	(Staubwasser et al., 2003)
Roman Warm Period (Wet)	2.2	1.7	(McCormick et al., 2012)
Dark Ages Cold Period (Dry)	1.5	1.2	(Helama et al., 2017)
Medieval Warm Period (Wet)	1	0.7	(Mann et al., 2009)
Little Ice Age (Dry)	0.7	0.2	(Grove, 2001)
Modern Warming (Wet)	0.2	0	(Masson-Delmotte et al., 2021)
Era	Start (ka)	End (ka)	Reference
Neolithic	10	6	(Zeder, 2009)
Chalcolithic (Copper Age)	6	5	(Roberts and Thornton, 2014)
Bronze Age	5	3.2	(Kristiansen and Larsson, 2005)
Iron Age	3.2	2.5	(Fagan, 2005)
Classical Antiquity	2.5	1.5	(McCormick et al., 2012)
Site	Start (ka)	End (ka)	Reference
Sialk (Kashan)	8	4.5	(Ghirshman, 1938)
Shahr-e Sukhteh	5.5	4	(Rashidvash, 2012)
Tepe Hesar	4.2	2	(Dyson and Howard, 1989)
Dynasty	Start (ka)	End (ka)	Reference
Elamite	5	2.5	(Potts, 2016)
Median	2.7	2.55	(Gropp, 1998)
Achaemenid	2.55	2.3	(Briant, 2002)
Seleucid	2.3	2.05	(Grainger, 2014)
Parthian	2.05	1.7	(Bivar, 1983)
Sassanid	1.7	1.35	(Daryaee, 2023)
Islamic Dynasties	1.35	0.1	(Kennedy, 2022)
Modern Iran (Pahlavi–Now)	0.1	0	(Axworthy, 2008)