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Abstract. The geodetic and geophysical literature shows an abundance of mascon approaches for modelling the
gravity field of Moon or Earth on global or regional scale. This article illustrates the differences and similarities
of the methods, which are labelled as mascon approaches by their authors.

Point mass mascons and planar disc mascons were developed for modelling the Lunar gravity field from
Doppler tracking data. These early models had to consider restrictions in observation geometry, computational
resources or geographical pre-knowledge, which influenced the implementation. Mascon approaches were later
adapted and applied for the analysis of GRACE-observations of the Earth’s gravity field with the most recent
methods based on the simple layer potential.

Differences among the methods relate to the geometry of the mascon patches and in the implementation of
the gradient and potential for the field analysis and synthesis. Most mascon approaches provide a direct link
between observation and mascon parameter —usually the surface density or the mass of an element—, while
some methods serve as a post processing tool of spherical harmonic solutions. This article provides an historical
overview of the different mascon approaches and sketches their properties from theoretical perspective.

Keywords. regional gravity field analysis, mascon approach, point mass modelling, simple layer potential, post
processing

1 Introduction

The gravity field of the Earth influences the daily life in many
ways. Local plumb lines define the upward directions and
several scientific instruments must be leveled before usage.
Gravity measurements provide corrections for geophysical5

height systems and allow the exploration of mineral deposits
or caves. A gravity field model is also required for inertial
navigation systems within airplanes, ships or submarines. On
regional or global scale, mass re-distributions like the melt-
ing of glaciers or the changes in ground water are reflected10

in the temporal variations of the gravity field.
The gravity field of the Earth – or another celestial body –

can be analyzed on global scale when enough orbiting satel-
lites are tracked even without special onboard instruments or
ground-based measurements. Satellite data provide a fast and15

homogeneous sampling in opposite to ground-based observa-
tions. The gravity field analysis establishes a connection be-
tween the tracking data and a set of base functions to model
the gravity field. An analysis by spherical harmonic functions

is preferable for spherical bodies, as these base functions are 20

the natural solution of the Laplace equation. This set of base
functions is also a complete and orthogonal system, which
simplifies the analysis. However, a reasonable spherical har-
monic analysis requires orbit observations with global and
homogeneous data distribution and the model will have the 25

same resolution everywhere.
Alternative localizing base functions – e.g. point masses,

spherical radial base functions, wavelets, Slepian function
– are investigated and applied when the data distribution is
irregular or when more details in a region of interest shall 30

be detected. This article will summarize the localizing base
functions which are labeled as mascons and applied for the
gravity field modelling of Earth and Moon.

Studies of the early Lunar orbiters demonstrated signifi-
cant orbit disturbances, which were traced back to an irregu- 35

lar Lunar gravity field. The term "mascon" was introduced by
Muller & Sjogren (1968b) for describing these mass concen-
trations near the surface. In the same work, the name mascon
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was also introduced for the mathematical modelling of these
mass concentrations. The concept was applied for several
years to the gravity field of the Moon, as the method was ca-
pable of the nearside restriction of data in opposite to spher-
ical harmonic solutions. The interest of regional modelling5

of the Earth’s gravity field significantly increased since the
gravity field mapping mission GRACE (2002–2017) and its
successor mission GRACE-FO (2018 – present). The new ob-
servations enabled the analysis of temporal variations caused
by water and ice masses redistribution, where regional grav-10

ity field modelling overcomes the spherical harmonic solu-
tions. Hence, the mascon concept has been adapted and ap-
plied to Earth-related data by several research groups, either
for regions of interest (Luthcke et al., 2008; Schrama et al.,
2014; Ran et al., 2018) or on global scale (Koch & Witte,15

1971; Andrews et al., 2015; Save et al., 2016).
A closer inspection of the publications, however, shows

a variety of approaches under the label of mascons. This
article shall give a historical overview of the most promi-
nent representatives and an adequate definition of the mas-20

con base functions. All different meanings of the investigated
mascon approaches can be covered by the following defini-
tion: The term mascon either refers to the fact of a significant
gravitational anomaly within a celestial body, or to a mod-
elling of these anomalies by localizing base functions. The25

localizing base functions which are labelled as mascons in-
clude point masses or discrete surface elements based on the
simple layer potential. In case of surface elements, the sur-
face density is constant per mascon and each localizing base
function is —in a spectral representation at least in the limit30

of high degree expansion— a two-dimensional step function
on the sphere. Methods of post processing are also labelled
as mascon approach when their surface elements have a con-
stant surface density. The shape of the mascon is not relevant
for the definition and the surface of the celestial body is not35

necessarily covered.
This publication is focused on the mascons’ definitions

and will ignore other processing steps, like back-ground
models, regional constraints or regularization techniques.
Each mascon approach is presented by the associated grav-40

itational potential of a single element and its gradient in the
notation of representative literature. Properties of each ap-
proach are deduced from the theoretical perspective only, but
without treating programming experiments or numerical as-
pects. Such a detailed and comprehensive review of the dif-45

ferent mascon approaches can not be found in literature to
our knowledge.

In several previous articles, the authors quote only the
original publication (Muller & Sjogren, 1968b) for the term
mascon and restrict themselves in the following texts to a50

specific mascon approach with its literature (e.g.: Luthcke
et al. (2008); Lemoine et al. (2007); Krogh (2011); Andrews
et al. (2015)).

A point mass model and planar discs are applied for mod-
elling the Lunar gravity field in (Wong et al., 1971) and both55

methods are considered as mascon approaches. In (Watkins
et al., 2015; Save et al., 2016) different mascon approaches
are presented in the introductions, but without formulas or
historical background. The authors of both articles classify
three principle concepts: 60

A) Mascons which have an analytical expression for the
gravitational potential and explicit partial derivatives for
the gradient.

B) Mascons which are represented by a finite series of
spherical harmonic functions and with partial deriva- 65

tives derived via the chain rule.

C) Mascons which serve as a post-processing tool to ob-
tain regional mass changes from monthly spherical har-
monic solutions.

An analogous classification with additional literature is pre- 70

sented by (Abedini et al., 2021a), whose contribution is a nu-
merical method for the gradient, which does not fit into the
threefold scheme.

Many recent publications are related to mascon solutions
either of the NASA Goddard Space Flight Center (GSFC) 75

or of the Jet Propulsion Laboratory (JPL) or the Center for
Space Research (CSR). The current JPL solutions are spher-
ical cap mascons with analytical partial derivatives — i.e.
category A in the classification— which are presented in
Section 3.2. The mascon approaches of GSFC and CSR 80

are based on spherical harmonic functions and they are a
prominent example of type B (cf. Section 3.1). The mas-
con visualization tool at the University of Colorado Boul-
der (https://ccar.colorado.edu/grace/index.html) enables an
analysis and comparison of the latest solutions at JPL and 85

GSFC for regions and generates time series per location.

2 Mascons for modelling the Lunar gravity field

2.1 Mascons – mass anomalies close to the Moon’s
surface

The origin of the mascon concept is closely related to early 90

models of the Lunar gravity field.
In the space race between the Soviet Union (USSR) and

the United States of America (USA), both nations wanted
to send their representatives to the Moon first. The possible
landing sites were investigated by spacecrafts, starting with 95

Luna 1 (USSR) in 1959, which missed the Moon due to nav-
igation issues. The first man-made object on Moon was the
space probe Luna 2 (USSR) in a design impact in 1959, fol-
lowed by several missions of both nations. The spacecraft
Luna 10 (USSR) and Lunar Orbiter 1 (USA) were the first 100

artificial orbiters around the Moon in 1966 (Neal, 2008).
In both orbiter missions, the observed orbits differed af-

ter short time from the predicted ones, which indicated ei-
ther an incorrect or an incomplete model. As other error
sources could be excluded soon, the orbit disturbances were 105

https://ccar.colorado.edu/grace/index.html
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Figure 1. Lunar marias and selected tracks of Lunar Orbiter given
in (Muller, 1972)

explained by significant mass anomalies below the Moon’s
surface. For these anomalies, the term "mass concentration"
or "mascon" was introduced in (Muller & Sjogren, 1968b).

All identified mascons on the nearside of the Moon cause
relatively large and positive effects up to 200mGal and their5

locations are one-to-one correlated to the major Lunar maria
including Imbrium, Serenitatis, Crisium, Humorum and Nec-
tari, which are visualized in Fig. 1 (Muller, 1972).

In particular for the Moon it is still common to call a large
area with a significant positive mass anomaly a mascon in-10

dependent of its mathematical representation (Floberghagen,
2001, p.3). A similar behavior can be found for example
in (Barthelmes, 1986, p. 35), where the mass anomalies of
the Earth gravity field are called mascons without using the
phrase for the mathematical modelling as well. This thesis fo-15

cuses on the point mass modelling, but it also sketches simple
layer potential with discrete surface elements, and both as-
pects will be identified as mascon approaches in the current
article.

2.2 Point mass mascons20

A quick modelling of the mass anomalies was important for
the preparation of the latter space missions and the landing
on the Moon. The chosen representation should

– consider the geographical pre-knowledge i.e. the Lunar
maria as expected locations of the mass anomalies,25

– consider the observation geometry, i.e. the fact that only
the near side of the Moon allows observations from ter-
restrial ground stations,

– enable a direct relation between observables —Doppler
tracking data in case of the early Lunar missions— and30

the estimated mascon parameters,

– remain simple due to limited computer resources.

The first three requirements are still important arguments for
regional gravity field analysis — by mascons, wavelets, ra-
dial basis functions, Slepian functions etc.—, while the lim- 35

ited resources implied a simple modelling of the anomalies
by point masses.

The original papers (Muller & Sjogren, 1968b, a; Muller,
1972) lack a formula representation of the potential, but it is
re-constructed for example in (Floberghagen, 2001, p.19): 40

V (rP ) =GM

(
1

‖rP ‖
−

Q∑
q=1

δmq

‖rP − rq‖

)
(1)

with

– V (rP ): gravitational potential at the calculation
point rP ,

– G: gravitational constant, 45

– M : mass of the celestial body,

– δmq: mass ratio between point masses and total
mass M ,

– rq: centres of the point masses.

Please note, that for consistency all mascon quantities and 50

their geometries are labelled in this article by an index (here:
q = 1,2, ...,Q), and the calculation point is labelled by the
index P , both independent of the cited articles.

2.2.1 Relation to the observation and the estimation
process 55

A standard observation technique for space probes is the
Doppler tracking, i.e. the change in frequency of a (re)-
transmitted signal due to relative motion of the spacecraft and
the ground station. The American missions use a few glob-
ally distributed stations, which meanwhile form the Deep 60

Space Network of the NASA and which are operated by JPL
today1. The Doppler signal does not provide complete in-
formation on the position or velocity, but only a projection of
the relative velocity between station and space probe onto the
line-of-sight (Muller & Sjogren, 1968a; Weinwurm, 2004; 65

Floberghagen, 2001).
The relationship between observation and mascon param-

eters requires a description of the change in velocity —i.e.
the acceleration— of the spacecraft caused by the gravita-
tional potential. Hence, it is sufficient to derive the gradient 70

by r̈P =∇V (rP ) of the potential. For point mass model, the
gradient is calculated via

∇V (rP ) =GM

(
− 1

‖rP ‖3
rP +

Q∑
q=1

δmq

‖rP − rq‖3
(rP − rq)

)
.

(2)

1The equivalent system of the USSR is not discussed in the in-
vestigated material.
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(a) Polyhedron model of the asteroid 216 aka Kleopatra

(b) Geometrically sub-division of one tetrahedron by parallel
planes with the mascon locations as large dots

Figure 2. Modelling the gravity field of the asteroid Kleopatra by
point mass mascons according to (Chanut et al., 2015), where the
second image is converted to gray-scale for this article.

To emphasize the special requirements and restrictions for
the early Lunar modelling, some details shall be sketched
here as well: According to (Muller & Sjogren, 1968a, b),
residual observations are created by removing the gravita-
tional effect of a tri-axial Moon model and the acceleration5

of Sun and other planets from the raw Doppler tracking data.
Cubic polynomials are fitted to the residuals for smooth-
ing and estimation of accelerations. The accelerations are
mapped to a constant orbit height of 100km altitude above
the Moon’s surface. The point masses are introduced directly10

below the trajectory with a depth of 50km below the sur-
face and their magnitudes are estimated. Additional infor-
mation is given in (Wong et al., 1971), like the restriction
to 100 parameters in the estimation process due to imple-
mentation, and the step-wise solutions in North-South bands,15

which cover usually 8 trajectories —with 48 elements in the
estimated state vectors— and around 50 point masses below
the tracks.

2.3 Point mass mascons for irregular celestial bodies

Point mass mascons are also used in a different way to de-20

termine the gravity field of irregular celestial bodies. An ex-

ample can be found in (Chanut et al., 2015), where the grav-
ity field of the asteroid 216 – also known as Kleopatra – is
predicted by polyhedron models and point mass mascons. In
case of asteroids, the irregular shape is observed by optical 25

instruments first, while orbiters investigate only in rare cases
the gravity field directly. The observed shape is approximated
by tetrahedrons with three corners on the surface and one
in the geometrical centre of the asteroid (cf. Fig. 2a). Point
masses are located then, either one per tetrahedron in its ge- 30

ometrical centre or three in the centres of a geometrically
sub-divided tetrahedron (cf. Fig. 2b). Assuming a constant
density of the asteroid and a known total mass, the mass per
mascon is assigned to a value proportional to the surround-
ing volume and the gravity field around the object can be 35

predicted.

Properties

The point mass mascons have closed formulas for poten-
tial and explicit partial derivatives, which identifies them as
type A mascons in the threefold scheme: 40

+ The method is very easy to implement and requires only
few computational resources.

+ The gradient and all other field quantities are found
without quadrature.

– The model is singular for the potential and the gradient 45

at the location of the point masses.

– In case of the Lunar gravity field, assumptions are re-
quired for location and depth below ground, as the
Doppler tracking data and the observation geometry do
not allow a detection of this information from the mea- 50

surement.

It should be pointed out that the modelling by point
masses is applied for example in (Baur & Sneeuw, 2011) or
(Barthelmes, 1986; Claessens et al., 2001; Lin et al., 2014)
without being labelled as mascon approach by the authors, 55

and that in the latter examples also the positions of the masses
are estimated for regional studies of the Earth’s gravity field.
An iterative algorithm is developed and justified via quasi-
orthogonality in the sense of an inner product in (Barthelmes,
1986). To stabilize the optimization process, the possible 60

movement per point mass shall be restricted in depth but also
in radial or tangential direction w.r.t. to an initial position.

2.4 Planar disc mascons

As a response to (Muller & Sjogren, 1968b), an article of
Conel & Holstrom (1968) presents a physical interpretation 65

of the ringed Lunar maria, according to which former impact
craters are filled afterwards by denser material. The authors
experiment in the modelling of the mass anomalies with an
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arrangement of planar discs of finite thickness inside the im-
pact craters and demonstrate a better post-fit to the residual
Doppler tracking data for mare Serenitatis.

Obvious issues of point masses are discussed in (Wong
et al., 1971), i.e5

– the singularities of the model at the centres,

– bad fitting of the residual tracking data in the equatorial
zone of the Moon due to the observation geometry,

– and combination issues with the spherical harmonic
models (of very low degree and order at the time).10

To overcome these problems, finite mass elements are sug-
gested for modelling the gravitational anomalies, which also
agrees with the physical ideas in (Conel & Holstrom, 1968).

The finite mass elements are chosen for a simple and effi-
cient solution to be oblique rotational ellipsoids, also known15

as spheroids (Wong et al., 1971). The gravitational potential
of a spheroid and its gradient are derived in (Moulton, 1960,
p. 119–132). On the one hand, the gravitational potential re-
quires a series expression

V =
M

R

[
1 +

b2

10

x2
P + y2

P − 2z2
P

R4
e2 +O(e3)

]
(3)20

with

– M : total mass of the spheroid (the gravitational constant
is neglected in this exercise of the book),

– R= ‖rP ‖: Euclidean distance between spheroid’s cen-
tre and calculation point rP = (xP ,yP ,zP ) outside the25

body,

– b: semi-minor axis of the spheroid (and semi-major axis
a),

– e=
√

a2−b2
a2 numerical eccentricity.

On the other hand, the gradient of the potential can be derived30

in a closed formula. In (Wong et al., 1971), the semi-minor
axis b is then squeezed to zero, which leads to the attraction
of a circular and planar disc. The article provides the gradient
of a single disc in the form

ẍ=−3Gm

2a3

(
−
√
k

(1 + k)
+ arcsin

(
1√

1 + k

))
x

ÿ =−3Gm

2a3

(
−
√
k

(1 + k)
+ arcsin

(
1√

1 + k

))
y

z̈ =
3Gm

a3

(
1√
k
− arcsin

(
1√

1 + k

))
z,

(4)35

where k fulfils the quadratic equation

k2a2 +
(
a2− (x2 + y2 + z2)

)
k− z2 = 0. (5)

To bring the expressions of the gradient in (Moulton, 1960)
and (Wong et al., 1971) into an analogous form, the identity
arcsinζ = arctan(ζ/

√
1 + ζ2) must be kept in mind. It also 40

turns out that the value k is linked to the numerical eccentric-
ity of the spheroid by the relation e= (1/

√
1 + k).

These planar disc mascons must be rotated and translated
on the surface or close to it onto different locations, which
is only implicitly indicated due to the definition of the co- 45

ordinates (x,y,z) w.r.t. the centre of each disc (Wong et al.,
1971).

Properties

The planar disc mascons have closed formulas for explicit
partial derivatives of the potential, which identifies them as 50

type A mascons:

+ The closed formulas don’t require any integration for
the gradient.

+ The surface elements have all the same shape, size and
area for each mascon. 55

– The potential of a mascon requires a series expansion.

– The model is singular for the potential at the centre of
the disc.

– The surface elements don’t cover the complete surface
even in a global analysis. 60

– Most points within a disc are either above or below the
spherical surface.

In fact, the planar disc mascons are a kind of a simple layer
potential, but without implicit or explicit integration for the
gradient. 65

3 Simple layer potential and its regional subdivision

Modelling the gravitational potential by a simple layer was
well known in geodesy and became popular around 1970.

The method can be applied to the complete potential or to
a residual field after subtracting a reference field. The basic 70

idea is to condensate the (remaining) in-homogeneous mass
distribution onto the surface S, either the topography itself or
a simpler reference like a sphere or spheroid (Koch & Witte,
1971; Morrison, 1971).

The gravitational potential of the layer is given by 75

V (rP ) =G

∫∫
S

σ(Ω)

`(Ω,rP )
dΩ (6)

with

– V (rP ): gravitational potential at the calculation
point rP ,
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– σ(Ω): location dependent surface density,

– G: gravitational constant,

– `(Ω,rP ) =
√

(xP −x)2 + (yP − y)2 + (zP − z)2:
Euclidean distance2 between calculation point rP =
(xP ,yP ,zP ) and all surface points P = (x,y,z) with5

P ∈ S ,

– dΩ: the differential surface element.

In the mascon version of the simple layer potential, the
surface S is sub-divided into smaller regions Sq —which are
called surface elements or patches in this article—, where the10

density is assumed to be constant. This leads to the mascon
representation of the (residual) potential

Vq(rP ) =Gσq

∫∫
Sq

1

`(Ω,rP )
dΩ (7)

V (rP ) =

Q∑
q=1

Vq(rP ). (8)

A linear combination (8) of all mascons —where the sum-15

mation weights σq are included in the potential Vq(rP ) per
mascon here— generates the potential of the simple layer
again. On the one hand it should be pointed out, that the
method is applied for example in (Koch & Witte, 1971) with-
out being labelled as mascon approach. On the other hand, all20

following mascon approaches are based on the simple layer
potential with discrete surface elements and constant surface
densities which justifies the mascon label here as well.

3.1 Lumped spherical harmonics as mascons

Solving the Laplace equation in spherical coordinates leads25

to the spherical harmonic functions as a natural basis for
gravity field modelling. An adequate linear combination of
spherical harmonic functions can also be used to define lo-
calizing base functions like the mascons in the spectral do-
main. Due to this combination over all degrees and orders,30

the result is sometimes labelled as "lumped spherical har-
monic approach" (Klosko et al., 2009).

Firstly, the gravity field is decomposed into a static field
and its temporal variations:

V = V0 +Vt (9)35

The static field and the mascons are represented by spheri-
cal harmonic synthesis. According to (Heiskanen & Moritz,
1967; Koch & Witte, 1971; Seeber, 2003), the potential is

2The unusual arguments of the distance expressions are intro-
duced here for highlighting the dependency on two distinct point
sets.

given by

V0(λP ,θP , rP ) =
GM

r

L∑
l=0

(
R

r

)l l∑
m=0

P l,m(cosθP )

×
(
Cl,m cosmλP +Sl,m sinmλP

)
(10)

40

with

– V0(λP ,θP , rP ): potential of the static field,

– (λP ,θP , rP ): spherical coordinates of the evaluation
point rP , i.e. longitude λP , co-latitude θP and ra-
dius rP , 45

– GM : product of gravitational constant G and the mass
of the celestial body M ,

– R: radius or semi-major axis of the spherical or ellip-
soidal reference body,

– P l,m(cosθ): fully-normalized Legendre functions, 50

– {Cl,m,Sl,m}: fully-normalized spherical harmonic co-
efficients also known as Stokes coefficients.

The approach arised at GSFC when analysing the data of
the GRACE-mission and it is presented in a sequence of ar-
ticles (Rowlands et al., 2005; Lemoine et al., 2007; Klosko 55

et al., 2009; Rowlands et al., 2010; Luthcke et al., 2013).
The mascons are generated in the spectral domain by

(time-dependent) delta Stokes coefficients or differential
Stokes coefficients of a simple layer

∆C
q

l,m(t) =
(1 + k′l)R

2

(2l+ 1)M
σq(t)

∫∫
Sq

P l,m(cosθ)cosmλdΩ

∆S
q

l,m(t) =
(1 + k′l)R

2

(2l+ 1)M
σq(t)

∫∫
Sq

P l,m(cosθ)sinmλdΩ

(11)

60

with the Love numbers k′l for considering the loading effects
of the extra masses on the surface.

The mascon solutions of the JPL are published
online (https://earth.gsfc.nasa.gov/geo/data/grace-mascons),
and also the mascon solution of the CSR can be found on- 65

line (http://www.csr.utexas.edu/grace/). As the formulas re-
quire standard techniques of geoscience, also other groups
are working with these kind of mascons (e.g. Andrews et al.
(2015); Krogh (2011)).

The lumped spherical harmonic approach can be used for 70

any (almost spherical) body, but the approach is in particular
introduced for analysing the temporal variations of Earth’s
gravity field due to the variable water storage. Taking into
account that a uniform layer of 1cm fresh water within an

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
http://www.csr.utexas.edu/grace/
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Figure 3. Sub-division in a longitude-latitude grid and a differen-
tial volume element of the sphere (Abedini et al., 2021a). In an al-
ternative interpretation, the figure illustrates a two-dimensional step
function on the sphere, which is either zero (=white) outside and
constant but non-zero (=gray) inside a mascon element.

area of 1m2 has a mass of around 10kg, the density is re-
written in (Rowlands et al., 2010; Luthcke et al., 2013) as
σq = 10Hq —in (Save et al., 2016) the factor σq = 10.25Hq

is used instead— to express the results in centimetre of water
height. Each mascon is determined by a spherical harmonic5

synthesis

Hq(rP , t) =
M

40πR2

L∑
l=0

(
2l+ 1

1 + k′l

) l∑
m=0

P l,m(cosθP )

×
(

∆C
q

l,m(t)cosmλP + ∆S
q

l,m(t)sinmλP

)
(12)

on the spherical surface r =R and with the upward continu-
ation term (R/r)l in the synthesis formula if necessary.

If the maximum degreeL of the expansion is large enough,10

expression (12) forms a "two-dimensional step function" on
the sphere S (cf. Figure 3) with

Hq(rP , t) =

{
Hq in the region of interest, i. e. Sq
0 outside.

(13)

A straight-forward sub-division of a sphere is given by a
longitude-latitude grid, i.e. all boundaries are either part of15

parallel circles or of meridians. In this case, the integrals (11)
have the differential surface element dΩ = cosθdθdλ of the
unit sphere and the integration can be obtained by recursion
formulas of integrated Legendre functions.

The size and shape of the surface elements varies within20

the publications:

Figure 4. Definition of mascon surface elements in the Mississippi
basin. The figure originates from (Klosko et al., 2009), but it is con-
verted to gray-scale for this article.

– (Lemoine et al., 2007; Rowlands et al., 2005) present
a separation of the region of interest into surface el-
ements of equal angles with the dimension 4◦× 4◦,
while (Krogh, 2011) defines patches of the dimension 25

1.25◦× 1.5◦ and 1.5◦× 1.5◦.

– Equal areas within a longitude-latitude grid can be ob-
tained by stretching or shrinking one of the angles de-
pendent on latitude, which is discussed already in (Mor-
rison, 1971), and applied in experiments of (Rowlands 30

et al., 2010) and (Andrews et al., 2015).

– In (Klosko et al., 2009) the surface elements have —
at least in the corresponding Figure 4— more complex
boundaries. The lines are still along parallel circles and
meridians, but combined in such a way, that the mas- 35

con patches fill irregular shapes of sub-basins within the
Mississippi basin.

– In the CSR solution, the equal area per mascon is con-
sidered to be more relevant than a simple sub-division
or a complete coverage of the sphere (Save et al., 2016). 40

A geodesic grid with 40962 vertices is generated by it-
eration, and the mascon patches are located in the cen-
tres. The shapes of the patches are either hexagonal or
pentagonal, and the elements cover approximately equal
areas of around 1◦ diameter. 45

The regularization techniques for equiangular patches are
discussed (Abedini et al., 2021b) for another type of mas-
cons, but the final recommendation to consider herein the
area size should be transferable to the lumped spherical har-
monic approach as well. 50

Observation of GRACE

The mascons were introduced for analysing the Earth’s grav-
ity field in the mission GRACE (Gravity Recovery And Cli-
mate Experiment). The mission consisted in two identical
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satellites, which were launched in 2002 in a cooperation of
NASA/JPL and the German DLR. The satellites fell around
the Earth in one common and almost circular orbit with a
low altitude of originally 500km height. The positions were
quasi-permanently observed by GPS receivers with three an-5

tennas, and onboard accelerometers with three axes mea-
sured the combined influence of all non-gravitational effects.
The main observable was the variation of the distance be-
tween the two GRACE satellites measured by microwaves in
the K-band and Ka-band via a range-rate measurement sys-10

tem. The distance of ρ≈ 250km between the satellite centres
varied due to mass variations below, and the K-band provided
a nominal accuracy of 10µm for the range ρ, and 0.5µm/s
for the range-rate ρ̇ (Seeber, 2003; Tapley et al., 2004).

The orbit observations and the gravity field parameters can15

be linked in different ways —e.g. the variational equation,
the energy balance approach, the short arc approach or the
acceleration approach— which are sketched for example in
(Liu, 2008). The details are not in the focus of this work,
but most methods require the gradient of the gravitational20

potential again.

Gradient of the lumped spherical harmonic mascons

For the range-rate ρ̇ in the lumped harmonic approach, the
relationship is found in (Luthcke et al., 2013) by chain rule

∂ρ̇

∂Hq
=

L∑
l=0

l∑
m=0

∂ρ̇

∂Cl,m

∂∆C
q

l,m

∂Hq
+

∂ρ̇

∂Sl,m

∂∆S
q

l,m

∂Hq
(14)25

and analogously for range-acceleration ρ̈. The derivatives{
∂∆C

q
l,m

∂Hq
,
∂∆S

q
l,m

∂Hq

}
are straight-forward, as the formu-

las (11) are linear w.r.t. the surface density σq or the water
height Hq .

Properties30

The lumped spherical harmonic approach is a representative
of the type B mascons.

+ The method is very easy to implement after a previous
analysis of the GRACE-observations by spherical har-
monic functions.35

+ After the determination of all delta Stokes coefficients,
all other field quantities can be calculated by standard
methods of spherical harmonic synthesis.

+ The required integration (11) can be solved by well-
known recursion formulas or by numerical quadrature.40

– A high degree L of expansion might be required for
straight boundaries and constant values within the two-
dimensional step-functions.

3.2 Spherical cap mascons

The planar disc mascon approach (in Section 2.4) is not satis- 45

fying from a geometrical view point, as most points within
the element are either above or below the spherical surface.
This can be avoided by introducing spherical caps instead
of planar discs. Monthly solutions in terms of spherical cap
mascons are calculated at the JPL and the details can be 50

found in (Watkins et al., 2015).
To reduce the effort of quadrature for the gradient expres-

sion, a local mascon coordinate system is introduced for each
element by rotation where the centre of the mascon is equal
to the new North pole of the system. The new coordinates are 55

the spherical distance γ and the azimuth ξ in the calculation
point. The potential is still based on the simple layer theory
leading to the integral

V̄q(rP ) =R2σq

α∫
0

2π∫
0

dξ sinγdγ
`(Ω,rP )

(15)

for the potential of a spherical cap with 60

– V̄q(rP ); gravitational potential per mascon in the local
mascon coordinate system (the over-bar is introduced
here to emphasize the rotated coordinate system),

– σq: product of the gravitational constantG and mass per
mascon mq divided by the area of the spherical cap, i.e. 65

σq =
Gmq

2π(1−cosα)R2 ,

– R: radius of the spherical reference model,

– `(Ω,rP ): distance between calculation point rP =
(xP ,yP ,zP ) and the points P = (x,y,z) in the spher-
ical cap (in the original paper the Euclidean distance is 70

noted down by d),

– α: radius of the spherical cap in radians.

Gradient of the spherical cap mascons

The gradient of the potential V̄q(rP ) is calculated per mascon
and rotated at the end to the original coordinate system. The 75

iterated integration over the spherical distance and azimuth
is reduced to a single integral by expressing the azimuthal
component via elliptic integrals.

In the local mascon coordinate system, the gradient oper-
ator is of the form 80

∇V̄q =
(
∂V̄q

∂r , 0, 1
r
∂V̄q

∂θ

)>
(16)

where θ is the spherical distance between the calculation
point and the mascon centre. The formulas of the gradient
of a spherical cap are derived in an interoffice memorandum
at the JPL (R. Sunseri (2010): Mass concentration modelled 85
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as a spherical cap 343R-11-00) —which is not available to
us— and the results are quoted by (Watkins et al., 2015):

∂Vq
∂r

=−σqt3
(
I2
t
− cosθ · I1− sinθ · I3

)
1

r

∂Vq
∂θ

=−σqt3 (sinθ · I1− cosθ · I3)

(17)

with the abbreviation t= R
r and the three integrals

{I1, I2, I3}. The solution of the later ones requires complete5

elliptic integrals – first kind E(k) and second kind K(k) –
and numerical integration in the spherical distance direction

I1 =

∫
sinγ cosγ

[
m′√

l′+ 1(l′+ 1)
E(k)

]
dγ

I2 =

∫
sinγ

[
m′√

l′+ 1(l′+ 1)
E(k)

]
dγ

I3 =

∫
sinγ cosγ

m′
(

E(k)− (1− l′)K(k)
)

√
l′+ 1(l′+ 1)l′

dγ

(18)

with the auxiliary expressions

n= 1 + t2− 2tcosθ cosγ

m′ = 4/n3/2

l′ = 2tsinθ sinγ/n

k2 = 2l′/(l′+ 1).

(19)10

Properties

The mascon potential is calculated by quadrature, and analyt-
ical derivatives have been derived, which leads to a class A
mascon in the threefold scheme.

+ The two-dimensional quadrature for the gradients are15

reduced to a one-dimensional integration.

+ The calculation takes place only in the spatial domain
and avoids the truncation error of spherical harmonic
synthesis.

+ The surface elements have all the same shape, size and20

area for each mascon.

– The surface elements don’t cover the complete surface
even in a global analysis.

– The model is singular for the potential and the gradient
at the location of the centre of the spherical cap.25

– A straightforward implementation of the formulas (19)
leads also to an undefined expression when the calcu-
lation point is identical to the centre of the spherical
cap. One finds then t= 1 and θ = 0 and in consequence
l′ = 0/0. A solution might be given in the unavailable30

interoffice memorandum.

3.3 Mascons via quadrature of the simple layer potential

To avoid truncation errors and aliasing into coefficients of
lower degree and order via the spherical harmonic expan-
sion (14), a complete numerical integration is suggested in 35

(Abedini et al., 2021a, b). The potential is represented —in
our notation of Section 3— by the formula

T (rP ) =−G
∫∫
S

σ(Ω)

`(Ω,rP )
dΩ (20)

and is evaluated by numerical quadrature when necessary.
The extra minus-sign was likely introduced by the authors 40

due to non-geodetic literature, as physical textbooks often
use the definition r̈ =−∇V .

The derivatives of the range-rate ρ̇w.r.t. the surface density
are quasi decomposed by the chain rule

∂ρ̇

∂σq
=
∂ρ̇

∂X
∂X
∂σq

+
∂ρ̇

∂Ẋ
∂Ẋ
∂σq

(21) 45

into geometrical components
{
∂ρ̇
∂X ,

∂ρ̇

∂Ẋ

}
and dynamical com-

ponents
{
∂X
∂σq

, ∂Ẋ
∂σq

}
with

– X = X2−X1: difference vector between the satellites’
centre positions,

– Ẋ = Ẋ2− Ẋ1: difference vector between the satellites’ 50

centre velocities.

As the range-rate ρ̇ is calculated by ρ̇= X>Ẋ
‖X‖ , the geomet-

rical components are known and can be differentiated w.r.t.
positions and velocities.

The dynamical components are determined by the varia- 55

tional equation

ξ̈ =
∂2

∂t2

{
∂X
∂σq

}
=∇2U(X)

∂X
∂σq

+
∂∇T
∂σq

(22)

with U = GM
‖rP ‖ being the potential of the Kepler problem.

The equation is solved similarly to an orbit integration with
the initial values ξ = 0 and ξ̇ = 0 for each arc, each satellite 60

and each mascon. The integration error is limited by applying
the method only to short arcs over the region of interest, e.g.
Greenland in (Abedini et al., 2021a).

Properties

The approach is not fitting into the threefold scheme: 65

+ The method avoids truncation errors and aliasing by in-
tegration in the spatial domain.

+ The surface elements cover the complete surface in a
global analysis.

– The potential and the gradient require numerical 70

quadrature.
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– The variational equations lead to a high computational
burden, which is already admitted in (Abedini et al.,
2021a).

4 Mascons as post processing tool

Since the successful GRACE-mission it is possible to observe5

also the temporal variations of the gravity field. The stan-
dard output of these investigations are monthly solutions of
spherical harmonic coefficients, which are meanwhile com-
plemented by mascon solutions in the same time span by sev-
eral research centres.10

The question arises whether it is possible to estimate lo-
cal variations from the spherical harmonic solutions by post
processing. This is of particular interest for the ice masses
and glaciers in Greenland, Antarctica, Alaska, and the highly
variable water masses in the large water basins, which domi-15

nate the time-variable part of the gravity field.
The spherical harmonic functions have a global support,

which contradicts a regional analysis. Another problem is
the noise in the coefficients, which is overcome by filtering
and de-striping techniques of the cost of the spatial resolu-20

tion. To estimate regional mass changes, it can be helpful to
determine an adequate field quantity by spherical harmonic
synthesis and analyse this newly generated signal by another
base function with local support (Ran et al., 2018).

4.1 Spherical cap mascon as a post processing tool25

(Schrama et al., 2014) use the term mascon for post process-
ing of a time series of Stokes coefficients

{
C̄lm(t), S̄lm(t)

}
.

The goal is the determination of local mass variations in the
ice shields and glaciers based on a time series of spherical
harmonic coefficients.30

A long-term mean value
{
〈C̄lm〉,〈S̄lm〉

}
per coefficient

is calculated and subtracted, and a Gauß-filter Wl
G in the

spectral domain is applied by multiplication with the Stokes
coefficients. To represent the equivalent water height instead
of the potential, further standard factors are introduced:35 {
cw
lm(t)
sw
lm(t)

}
=
aeρe(2l+ 1)

3ρw(1 + k′l)
Wl

G

{
C̄lm(t)−〈C̄lm〉
S̄lm(t)−〈S̄lm〉

}
(23)

with

– ae: equatorial radius of the ellipsoidal Earth,

– ρe: mean density of the Earth,

– ρw: density of water,40

– k′l: Love numbers.

The spherical harmonic synthesis

h(λP ,θP , t) =

L∑
l=0

l∑
m=0

P̄lm(cosθP )

×
(
cw
lm(t)cosmλP + sw

lm(t)sinmλP

)
(24)

provides the mass variations w.r.t. a long term mean on a
spherical surface. The equivalent water height h(λP ,θP , t) 45

is then analysed by a set of localizing base functions

h(λP ,θP , t) =

Q∑
q=1

αq(t)βq(ψq,L,R) (25)

via least squares estimation and the determination of the
weights αq(t). Each base function βq(ψk,L,R) has the form

βq :=

L∑
l=0

γl(R)P̄l(cosψq) (26) 50

γl(R) =
1

2

R∫
0

P̄l(cosµ)sinµdµ, (27)

which is equivalent to a spherical cap with the radius R, the
maximum expansion degree L in the spectral domain and the
location (λq,θq) for its centre.

Properties 55

Original GRACE-data data are not required, as the method
is applied on the previous solution by spherical harmonics,
which leads to type C mascons:

+ The estimation of the weights is a straightforward pro-
cess via least squares estimation. 60

+ The surface elements have all the same shape, size and
area.

+ The required integration (27) can be solved by recursion
formulas or numerical quadrature.

– The effect of Gauß-filtering and the temporal average 65

on the solution’s quality are difficult to predict, and also
the chosen sampling in the spherical harmonic synthesis
might have an effect on the estimated masses.

– The surface elements don’t cover the complete surface
even in a global analysis. 70

4.2 Point mass mascons as post processing tool

(Ran, 2017; Ran et al., 2018) extend an idea of (Baur &
Sneeuw, 2011) by combining point masses and the simple
layer potential. The goal of the work is the estimation of mass
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variations over Greenland based on spherical harmonic coef-
ficients. The GRACE solutions are used to derive the radial
component of the gradient but with loading compensation in
orbit altitude:

δg(rP ) =−∂V
∂r

=−GM
r2
P

L∑
l=1

l+ 1

1 + k′l

(
a

rP

)l l∑
m=0

P l,m(cosθ)

×
(

∆Cl,m cosmλP + ∆Sl,m sinmλP

)
.

(28)5

This signal is analysed —by least squares estimation of
the surface densities ρq— by simple layer in the region of
interest:

δqP =− ∂

∂r

{
G

Q∑
q=1

ρq

∫∫
ds

`(Ω,rP )

}
=

=− ∂

∂r

{
G

Q∑
q=1

ρqIq,p

} (29)

The integral Iq,p is approximated by quadrature, which eval-10

uates the distances only in the nodes of a grid

Iq,p =

∫∫
ds

`(Ω,rP )
≈

Kq∑
j=1

wq,j
1

lq,j,p
(30)

with

– wq,j = Si/Kq: weighting of the evaluated points,

– lq,j,p: distance between the nodes and the evaluation15

point,

– Sq: the surface area of the mascon with the index q.

The Euclidean distance is expressed in spherical coordinates

lq,j,p =
√
r2
q,j + r2

p− 2rq,jrp cosΨq,j,p

with20

– rp = ‖rP ‖: distance of calculation point to the origin,

– rq,j = ‖rq,j‖: distance of nodes within the patch to the
origin,

– Ψq,j,p: angle between the vectors rq,j and rP .

The observable of the study is then given by25

δqP ≈G
Q∑
q=1

ρq

Kq∑
j=1

wq,j
(rq,j − rp cosΨq,j,p)

lq,j,p
3 . (31)

Properties

The method is applied on the previous solution by spherical
harmonics, which leads to type C mascons.

+ The method is very easy to implement. 30

+ Integration per mascon element is replaced by a
weighted sum of point masses located on a grid.

– The model is singular for potential and radial derivative
at the location of the nodes.

– Finding the weighting wq,j = Si/Kq might be chal- 35

lenging for irregular shaped patches.

5 Summary – mascons in gravity field modelling

Point mass models are an important tool for gravity field
modelling due to simplicity and efficiency. The point mass
representation is used for celestial bodies with irregular 40

shapes, but also for Earth or Moon on regional and global
scale. Point mass mascons are also a key aspect of converting
spherical harmonic solutions into regional mass variations,
which supports the interpretation of geophysical processes.

Mascons represented by finite surface elements are based 45

on the simple layer potential. These models form a subset of
localizing base functions for gravity field modelling. With-
out neighborhood conditions, a solution close to the ground
generates a discontinuous field. The discontinuity problem is
damped for higher evaluation altitude or small patches. The 50

constant density per mascon simplifies the interpretation of
mass variations in comparison to other localizing base func-
tions (e.g. wavelets or Slepian functions), which vary within
there region of interest. Planar disc and spherical cap mas-
cons are radial symmetric base functions, while the other 55

mascon concepts allow patches with arbitrary shapes. In par-
ticular, the shape can consider the geometry of water basins,
which reduces the leakage of signals in hydro-geodesy.
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