

Global tephra studies: role and importance of the international tephra research group ‘Commission on Tephrochronology’ in its first 60 years

David J. Lowe¹, Peter M. Abbott², Takehiko Suzuki³, and Britta J.L. Jensen⁴

¹School of Science/Te Aka Mātuatua, University of Waikato, Hamilton, New Zealand

²Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

³Department of Geography, Tokyo Metropolitan University, Tokyo, Japan

⁴Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

Correspondence: **David J. Lowe** (david.lowe@waikato.ac.nz)

History of Geo- and Space Sciences

Revised version dated 18 May 2022

51 **Abstract.** Tephrochronology is a unique correlational and age-equivalent dating method whereby practitioners
52 characterize, map, and date tephra (or volcanic ash) layers and use them stratigraphically as linking and dating
53 tools in the geosciences (including volcanology), studies of past environments, and archaeology. Modern
54 tephra studies *per se* began around 100 years ago (in the 1920s) but the first collective of tephrochronologists
55 with a common purpose and nascent global outlook was not formed until 7 September, 1961, in Warsaw,
56 Poland. On that date, the inaugural ‘Commission on Tephrochronology’ (COT) was ratified under the aegis of
57 the International Union for Quaternary Research (INQUA). COT’s formation is attributable largely to the
58 leadership of Kunio Kobayashi of Japan, the commission’s president for its first 12 years. We were motivated
59 to record and evaluate COT’s role and importance because tephrochronology continues to grow globally and
60 its heritage needs to be preserved and appreciated. In addition, studies on cryptotephras, which are fine-
61 grained glass-shard and/or crystal concentrations preserved in sediments or soils but insufficiently numerous
62 to be visible as a layer to the naked eye, have also expanded dramatically in recent times. In this article, we
63 therefore review the role and impacts of COT under the umbrella of INQUA for 53 of the last 60 years, or
64 under IAVCEI (International Association of Volcanology and Chemistry of the Earth’s Interior) for seven of
65 the last 60 years, including since 2019. The commission also functioned under other names (abbreviated as
66 COTS, CEV, ICCT, COTAV, SCOTAV, and INTAV). As well as identifying key persons of influence, we
67 describe the development of the commission, its leaders, and its activities that include organising nine
68 specialist tephra-field meetings in seven different countries. Members of the commission have participated in
69 numerous other conferences (including specialist tephra sessions) or workshops of regional to international
70 scale, and played leading roles in international projects such as INTIMATE and SMART. As well as strongly
71 supporting early-career researchers, the commission has generated ten tephra-themed journal volumes and two
72 books. It has published numerous other articles including field guidebooks, reports, and specialist internet
73 documents. Although its fortunes have ebbed as well as flowed, the commission began to prosper after 1987
74 when key changes in leadership occurred. COT has blossomed further, especially in the past decade or so as
75 an entire new cohort of specialists, including many engaged in cryptotephra studies, has emerged alongside
76 new geoanalytical and dating techniques to become a vibrant global group today. We name 29 elected officers
77 involved with COT since 1961 and their roles, and 15 honorary life members. After reviewing the aims of the
78 commission, we conclude by evaluating its legacies and by documenting current and future work.

79

80

81 **Short summary.** The Commission on Tephrochronology, formed in 1961, comprises global researchers who
82 characterize, map, and date tephra (volcanic ash) layers and use them stratigraphically as linking and dating
83 tools in geological, palaeoenvironmental, and archaeological research. We review the commission’s history –
84 its growth, leadership, and activities for 60 yrs that include hosting specialist meetings, symposia, and
85 workshops, developing new analytical and dating methods and protocols, and supporting ECRs.

86 *This article is dedicated to the memory of Kunio Kobayashi, who led the founding of*
87 *the Commission on Tephrochronology in 1961 and helped guide its earliest years*

88

89 **1 Introduction**

90

92 In this article we review for the first time the history and significance of global collaboration over the past 60
93 years by specialists – known as tephrochronologists – in the study of tephra, or volcanic ash, deposits
94 undertaken via an international tephra research group known as the ‘Commission on Tephrochronology’
95 (COT). We begin by defining the discipline of tephrochronology and its functioning before outlining the basis
96 and scope of our review of COT and its role and impacts as a global organisation over the past 60 years.

97

98 **1.1 What is tephrochronology?**

99

100 ‘Tephrochronology’ is a unique geoscientific method that uses characterized volcanic ash, or tephra, deposits
101 to connect and date geological, palaeoenvironmental, or archaeological sequences or events, and to transfer
102 and apply relative or numerical ages to them where such ages have been attained for the tephra (Thórarinsson,
103 1970; Lowe, 2011a) (Table 1). This method of transferring ages from one site to another using dated tephra
104 deposits common to each is known as age-equivalent dating (Lowe and Alloway, 2015). The age transfer at
105 the heart of tephrochronology is well-founded because tephras are erupted and deposited essentially
106 instantaneously (in terms of the geological time-scale), forming an isochron, or chronostratigraphic horizon or
107 time-plane, which is a thin layer or surface essentially of the same age everywhere it occurs: most volcanic
108 eruption events, especially very explosive, tephra-generating phases, typically last for only hours or days,
109 some perhaps weeks or months (Lowe, 2011a). Examples of geological isochrons additional to tephra layers
110 include magnetic polarity reversal horizons and tektite deposits (Pillans, 2013). Even where a tephra layer is
111 of uncertain or unknown age, it nevertheless provides a correlatable datum because it still represents an
112 isochron that allows the sequence in which it is found – on land, sea, or ice – to be correlated with other
113 sequences where the same tephra occurs. Hence sedimentary deposits or paleosols with their palaeoarchival
114 evidence are able to be positioned very precisely, or synchronized, on a common timescale using identified
115 tephra layers as stratigraphically fixed tie-points (Lowe, 2011a).

116 Undertaking tephrochronology relies on the principles of stratigraphy and on characterizing or
117 ‘fingerprinting’ tephra layers to enable them to be connected spatially (i.e., correlated) using both physical
118 properties evident in an outcrop in the field (e.g., Cas and Wright, 1987, pp. 477–8) and those obtained from
119 laboratory analysis, including mineralogical examination by optical microscopy or geochemical analysis of
120 glass shards or crystals using the electron microprobe and other techniques (Alloway et al., 2013; Lowe and
121 Alloway, 2015). Numerical ages for a tephra layer may be obtained using (i) radiometric methods such as
122 radiocarbon, fission-track dating (zircon, glass), U-series including (U-Th)/He, Ar/Ar, or luminescence; (ii)
123 incremental dating including dendrochronology, varved sediments, or layering in ice cores; (iii) age-

124 equivalent methods such as magnetopolarity, astronomical (orbital) tuning, or correlation with marine oxygen
125 isotope stages; (iv) age modelling including Bayesian flexible depositional modelling and wiggle-match
126 dating; and (v) historical records or observations (e.g., Colman et al., 1987; Lowe and Alloway, 2015;
127 Hopkins et al., 2021a). A range of visual and statistical methods can be used to facilitate correlation that may
128 also include some measure of probability (e.g., Pouget et al., 2014; Lowe et al., 2017a; Petrelli et al., 2017;
129 Bolton et al., 2020; Uslular et al., 2022).

130

131

132 **Table 1.** Tephra-related nomenclature*

133

134 Term	135 Definition
135 Tephra 136 (<i>sensu lato</i>)	136 Explosively-erupted, pyroclastic products of a volcanic eruption encompassing all grain 137 sizes (i.e., ash, lapilli, blocks/bombs) and compositions irrespective of emplacement 138 mechanism (from Greek <i>τέφρα</i> [<i>téphra</i>], ‘ash’, ‘ashes’).
140 Cryptotephra	140 Explosively-erupted, ash-sized glass-shard and/or crystal concentration preserved in 141 sediments or soils/paleosols but insufficiently numerous or too fine to be visible as a 142 layer to the naked eye (from Greek <i>κρυπτός</i> [<i>kryptós</i>], ‘hidden’, ‘secret’).
144 Tephrochronology 145 (<i>sensu stricto</i>)	144 Use of primary tephra/cryptotephra deposits as isochrons to connect and synchronize 145 depositional sequences, or soils/paleosols, and to transfer relative or numerical ages to 146 them using lithostratigraphic, compositional, chronological, and other data relating to 147 the tephra or cryptotephra.
149 Tephrochronology 150 (<i>sensu lato</i>)	149 All aspects of tephra or cryptotephra studies and their application.
152 Tephrochronometry	152 Obtaining a numerical age or calendrical date for a tephra layer or cryptotephra deposit.
154 Tephrostratigraphy	154 Study of sequences of tephra or cryptotephra deposits (and stratigraphically associated 155 materials), their lithologies, spatial distribution, stratigraphic relationships, and relative 156 and numerical ages; involves defining, describing, characterizing, and mapping 157 tephra/cryptotephra deposits.

159 *Mainly after Lowe (2011a) and Alloway et al. (2013).

160

161

162 In using the term ‘tephrochronology’, it should be appreciated that the original final ‘a’ of the root
163 word *téphra* (Table 1) is normally replaced with the connecting vowel ‘o’ in deriving compound words in
164 English based on Greek root words (Froggatt and Lowe, 1990; Lowe and Hunt, 2001).

165

166

167 1.2 Application of tephrochronology

168

169 Now recognised globally as one of the most versatile methods available to geoscientists, palaeoenvironmental
170 scientists, and archaeologists and palaeoanthropologists, tephrochronology is potentially applicable over
171 timescales spanning years to millions of years (Abbott et al., 2020a). Moreover, the method has the potential
172 to correlate sequences over distances ranging from metres to thousands of kilometres, and the capability of

linking and dating proximal, metre-thick deposits to diminutive distal layers comprising barely a handful of glass shards that have no visible expression (i.e., cryptotephras) (Hunt, 1999b; Abbott et al., 2020a). Applications of tephrochronology, chiefly for the Quaternary period, are equally varied and are becoming increasingly important in wide-ranging geological, geochronological, palaeoenvironmental, archaeological, and volcanological studies (Lowe, 2011a; Alloway et al., 2013; Cashman and Sparks, 2013; Lane and Woodward, 2022). Correlating dispersed tephra deposits, especially where well dated, back to their volcanic sources allows tephrochronological studies to provide information on the eruption frequency (i.e., eruption history) and geochemical evolution (petrogenesis) of volcanic regions and individual volcanoes (e.g., Thordarson and Larsen, 2007; Cashman and Sparks, 2013; Abbott et al., 2020a), as well as informing volcanic hazard modelling relating to, for example, aviation hazards (e.g., Prata and Rose, 2015; Bourne et al., 2016), impacts on human health (e.g., Newnham et al., 2010; Baxter and Horwell, 2015), and understanding volcano-climate interactions (e.g., Robock, 2015; Cooper et al., 2018; Marshall et al., 2022).

185

186 1.3 Defining tephra, cryptotephra

187

188 ‘Tephra’ is a collective term comprising all the explosively-erupted, fragmental volcanic material – pyroclasts – of any grain size (ash, lapilli, blocks or bombs), composition, or emplacement mechanism (Wright et al., 1981; Froggatt and Lowe, 1990; Cashman and Scheu, 2015). Throughout this article, ‘tephra’ refers mainly to pyroclastic *deposits* (cf. *material*) that are predominantly unconsolidated (Schmid, 1981; Le Maitre, 2002). Pluralization as ‘tephras’, with the appended ‘s’, is appropriate in modern geoscientific usage of transliterations and avoids ambiguity (Froggatt and Lowe, 1990; Juvigné, 1990; Lowe, 2011a).

194

‘Cryptotephra’ are explosively erupted, ash-sized, glass-shard and/or crystal concentrations that are preserved in sediments (including ice), or soils and paleosols, but which are insufficiently numerous (too sparse or disseminated), too thin, or too fine-grained, to be visible as a layer to the naked eye (Hunt, 1999a; Lowe, 2011a; Lane et al., 2017a). The prefix *crypto-* derives from a Greek word for ‘hidden’ or ‘secret’ (Table 1), conveying the hidden or concealed nature of these deposits (Lowe and Hunt, 2001).

199

200 1.4 Development of cryptotephra studies and advent of the modern era

201

202 The rise of cryptotephra studies is remarkable and they have been very influential over the past three decades, 203 largely through the development of new techniques that have facilitated the discovery of numerous non-visible 204 tephra deposits well beyond their previously known occurrences, in some cases by thousands of kilometres. In 205 turn, such occurrences have greatly extended the geographical utility of cryptotephra as isochrons for 206 correlating and dating historical, archaeological, palaeoclimatic/palaeoecologic, and geological events, and for 207 volcanological applications (see reviews by Lowe, 2008, 2011a; Davies, 2015; Ponomareva et al., 2015).

208 In terrestrial settings, fledgling cryptotephra studies began more than six decades ago: in Scandinavia,
209 Christer Persson was the first to publish articles, in the 1960s–1970s, from his pioneering work on sparse,
210 non-visible ash deposits preserved in peat bogs (Persson, 1966, 1971; see also Thórarinsson, 1970; Wastegård,
211 2005). Then in New Zealand, sparse glass shards – and crystals – preserved in soils/paleosols, or peat, lake, or
212 marine sediments, were investigated from the mid-1970s to mid-1980s by Hodder et al. (1976), Stewart et al.
213 (1977, 1984), Lowe et al. (1981), Robertson and Mew (1982), Hogg and McCraw (1983), Kyle and Seward
214 (1984), and Lowe (1986) (see also Hopkins et al., 2021a). Even earlier, however, some embryonic studies on
215 marine sediments showed that volcanic glass shards formed ‘volcanic ash zones’ in which the shards were
216 sometimes described as “ill-defined layers” or as being “not concentrated in distinct layers” (Bramlette and
217 Bradley, 1940, p. 3). Similarly, Kennett and Watkins (1970), in separating sand-size fractions from marine
218 sediments, noted that constituent “volcanic shards...do not form megascopically distinct layers...” (p. 932). In
219 both these, and likely many other cases, especially those reported from the 1970s onward (e.g., Ruddiman and
220 McIntyre, 1973; Huang et al., 1975), such indistinct glass-shard concentrations would qualify nowadays as
221 cryptotephras (see also Kennett, 1981).

222 Despite these early cryptotephra studies, tephrochronologists today recognise that the new discipline
223 of ‘cryptotephrochronology’ was propelled into the modern *systematic* era from 1990 by the publication of
224 Andrew Dugmore’s seminal UK-based paper of 1989 (Dugmore, 1989). The term ‘cryptotephra’, although
225 introduced in 1999 as ‘crypto tephra’ (Hunt, 1999a, p. viii), was first defined only in 2001 (Juvigné et al.,
226 2001; Lowe and Hunt, 2001). The discipline has subsequently witnessed new or improved techniques and
227 applications which, along with an entirely new type of researcher, have emerged to cater for the demanding,
228 forensic-like requirements of such research (e.g., Kalliokoski et al., 2020; Krüger and van den Bogaard, 2021;
229 Larsson et al., 2022). Initially targeting archives mainly comprising peat and lake sediment, ice cores and
230 marine sediments soon became another important focus (e.g., Abbott and Davies, 2012; Davies et al., 2014;
231 Abbott et al., 2018a, 2020a). Aeolian deposits including loess (e.g., Eden et al., 1992, 1996; Neall et al., 2001;
232 Matsu’ura et al., 2012; Obreht et al., 2016), and caves and rock shelters, have also yielded cryptotephras (e.g.,
233 Lane et al., 2011; Barton et al., 2015; Bruins et al., 2019; Hirniak et al., 2020), as have stalagmites (Klaes et
234 al., 2022). We list here further examples including benchmark methodological papers, regional reviews, and
235 recent papers on long sedimentary sequences that collectively emphasise the growing importance of
236 cryptotephrochronological research: Turney (1998), Hunt (1999b), Hall and Pilcher (2002), van den Bogaard
237 and Schmincke (2002), Davies et al. (2004, 2014), Gehrels et al. (2008), Wastegård and Davies (2009),
238 Swindles et al. (2011, 2019), Lawson et al. (2012), Matsu’ura et al. (2012, 2021), Wastegård and Boyle
239 (2012), Lane et al. (2013, 2014), Riede and Thastrup (2013), Smith et al. (2013), Abbott et al. (2018a, b,
240 2020a), Menke et al. (2018), Wulf et al. (2018), Albert et al. (2019), Leicher et al. (2019), Jones et al. (2020),
241 Freundt et al. (2021), Jensen et al. (2021), and Kinder et al. (2021).

242

243

244 1.5 Reviewing the Commission on Tephrochronology (COT)

245

246 The discipline of tephrochronology (and its burgeoning offspring, cryptotephrochronology), as outlined above,
247 is growing from strength to strength. To date, however, information about COT, its leadership, its activities,
248 and its fortunes, is scattered and sparse, and so we have assembled this review mainly because we recognised
249 that such knowledge, especially relating to the early years, was fast fading, and needed preserving and
250 evaluating for succeeding generations. We think that our review is thus timely and important. We were also
251 motivated by the especially strong support of commission members over the past decade, growing to over
252 ~200 including increasing numbers of early-career researchers (ECRs), many now becoming proficient and
253 experienced, as expressed at well-attended tephra meetings held in Kirishima, Japan (2010), Nagoya, Japan
254 (2015), Portland, Oregon (2017), Moieciu de Sus, Romania (2018), and Dublin, Ireland (2019) (see Sect. 3).
255 These contemporary practitioners wanted to maintain and enhance the active global collective the commission
256 had now become.

257 Although currently (and initially) known as the Commission on Tephrochronology, the tephra
258 research group has functioned under six other names since its formation (Table 2). As well, the commission
259 has been hosted at different times by one or the other of two large scientific unions, INQUA and IAVCEI (see
260 Sect. 2.2).

261

262 **Table 2.** Progression of names (with abbreviations) of the international tephra research group associated with
263 INQUA¹ or IAVCEI²

264

265 2019-on – Commission on Tephrochronology (COT) – IAVCEI

266 2007-2019 – International Focus Group on Tephrochronology and Volcanism (INTAV) – INQUA

267 2003-2007 – Subcommission on Tephrochronology and Volcanism (SCOTAV) – INQUA

268 1995-2003 – Commission on Tephrochronology and Volcanism (COTAV, COTS)³ – INQUA

269 1991-1995 – Commission on Tephrochronology (COT) – INQUA

270 1987-1991 – Inter-congress Committee on Tephrochronology (ICCT) – INQUA

271 1982-1987 – Commission on Explosive Volcanism (CEV)⁴, International Association of Volcanology and Chemistry of
272 the Earth's Interior – IAVCEI

273 1961-1982 – Commission on Tephrochronology or Commission on Tephra (COT), International Union for Quaternary
274 Research – INQUA

275

276 1 For a history of INQUA (and Quaternary science), see Neustadt (1969), Porter (1999), and Smalley (2011)

277 2 For a history of IAVCEI, see Cas (2019, 2022). A wider perspective on the development of international cooperation in
278 geosciences is given by Ismail-Zadeh (2016)

279 3 According to Lowe (1995, 1996a), the commission from 1995 was initially Commission on Tephra Studies (COTS)

280 4 COT was effectively replaced with CEV in this period (see Table 4) (CEV exists today alongside COT within IAVCEI).
281 Note that CEV was initially called Working Group on Explosive Volcanism (see Sect. 4.3)

282

283 In undertaking the review, we drew on our own and others' experience, various papers, and snippets
284 from conference proceedings and reports as available to provide a historical framework for the commission
285 and some of its globally-focussed activities (mainly conferences or workshops) since its founding in 1961. We
286 include a variety of images to add colour and to show a range of the activities, and some of the people,
287 involved in securing the accomplishments of COT.

289 We refer in the narrative to a number of key people and events, and critical progress in the
290 development of analytical and other techniques or protocols pertaining to COT. Although we contend that the
291 achievement of disciplinarity of tephrochronology has arisen in part because of the development of COT, we
292 acknowledge that multiple factors have been influential (e.g., see Paredes-Marino et al., 2022), such as
293 discussed in a broader philosophical context by Good (2000). Wider developments in the discipline of
294 tephrochronology and its advances are documented extensively elsewhere (e.g., Kittleman, 1979; Kennett,
295 1981; Thórarinsson, 1981; Westgate and Gorton, 1981; Fisher and Schmincke, 1984; Einarsson, 1986;
296 Bitschene and Schmincke, 1990; Knox, 1993; Feibel, 1999; Sarna-Wojcicki, 2000; Shane, 2000; Turney and
297 Lowe, 2001; Machida and Arai, 2003; Dugmore et al., 2004; Suzuki, 2007; Froese et al., 2008a; Lowe, 2008,
298 2011, 2014; Dugmore and Newton, 2009; Lowe et al., 2011a, 2017a; Alloway et al., 2013; Houghton, 2015;
299 Lowe and Alloway, 2015; Lane et al., 2017a; Abbott et al., 2020a).

300 Numerous geoscientists, including many in leadership roles, have been involved with the commission.
301 We record the names of those who have held positions as elected officers or who convened conferences or
302 workshops on behalf of the global tephra community. The contributions of various individuals to the
303 discipline of tephrochronology, addressed in some cases in our article, have been reported in special editorials,
304 historical articles, or obituaries (see Einarsson, 1982; Vucetich, 1982; Björnsson, 1983; Royal Geographical
305 Society, 1983; Noe-Nygaard, 1984; Steinthórsson, 1985, 2012; Lowe, 1990a; Wilson, 2005; Self and Sparks,
306 2006; Tonkin and Neall, 2007; Froese et al., 2008b; Lowe et al., 2008a, 2015a, 2017b; Slate and Knott, 2008;
307 Hunt, 2011; Moriwaki et al., 2011a; Suzuki et al., 2011; Benediktsson et al., 2012a; Alloway et al., 2013; Kile,
308 2013; Thomas and Lamothe, 2014; Plunkett et al., 2017; Lundqvist et al., 2019; Bunting et al., 2020; Mazei et
309 al., 2020; Hopkins et al., 2021a; Stork-Bullock Mortuary, 2021).

310

311

312 **2 Formation of COT**

313

314 In this section we describe how COT was formed largely by the substantial, far-sighted efforts of a tephra
315 specialist from Japan, Professor Kunio Kobayashi, initially with the support of two key colleagues and the
316 National Committee of Quaternary Research of Japan. We then describe the relationship of the commission to
317 its two hosting organisations, INQUA and IAVCEI, over the past 60 years.

318

319 **2.1 Forming COT in 1961**

320

321 The formation of the commission was initiated at a meeting of the National Committee of Quaternary
322 Research, Science Council of Japan, in Tokyo on 6 February, 1961. Attendants at the meeting agreed that a
323 proposal to form a commission on tephrochronology should be developed and presented at the forthcoming
324 VIth Congress of the International Union for Quaternary Research (INQUA) being held in Warsaw, Poland, in

325 September that year. Kunio Kobayashi (Fig. 1), Sohei Kaizuka, and Masao Minato were appointed to develop
326 the proposal (Kobayashi, 1965).

327

328
329 **Figure 1.** Professor Kunio Kobayashi (19 February, 1918–19 June, 1979), driving force and founding
330 president of COT. Photo taken 12 October, 1978 (from Committee for Publishing of Selected Papers by
331 Professor Kunio Kobayashi, 1990).

332

333 The Japanese troika prepared the proposal and, before the Warsaw Congress, mailed it to those
334 engaged in tephrochronological studies in various volcanic regions of the world and to the congress
335 Secretariat. The Secretariat copied part of the proposal, along with a list of publications on tephra studies
336 provided by the Kanto Loam Research Group of Japan, for distribution to conference participants. The pre-
337 congress proposal to form a COT within INQUA was as follows (Kobayashi, 1965, p. 782):

338

339 “Aims of the Commission: To advance the progress to the method [i.e., to further develop the method] of
340 tephrochronology and Quaternary researches based on tephrochronology.

341
342 Means of achieving these aims: 1. Gathering and exchange of information on tephrochronological studies in various
343 countries; 2. Report on the results of studies at the next INQUA congress.

344
345 Proposed by Masao Minato (Hokkaido University), Kunio Kobayashi (Shinshu University), Sohei Kaizuka (Tokyo
346 Metropolitan University).”

347

348 At the Warsaw Congress, the three proposers and others convened on 6 September, 1961, to formulate
349 a resolution to present to the General Assembly. Despite all the preparatory work, it seems the process was by
350 no means plain sailing. On arrival in Warsaw, Kobayashi had scanned the list of scientists coming to the
351 congress and discovered to his consternation that no tephra specialists were attending (other than from Japan).
352 However, Terah ('Ted') L. Smiley, a dendrochronologist from Tucson, USA, helped Kobayashi garner
353 support from various delegates from a wide range of disciplines (which, on reflection, may have ultimately
354 been to Kobayashi's advantage) including Väinö Auer, a pioneering palynologist from Finland who had
355 worked in tephras in South America from 1928 (e.g., Auer, 1965, 1974), Neville Moar, a New Zealand
356 palynologist who was well aware of the growing importance of tephra studies in his own work (e.g., Moar,
357 1961), André Cailleux, a French glacial geologist, and Carl Troll, a German geographer (Kobayashi, 1962, p.
358 129).

359 The full resolution as presented to the General Assembly is recorded below (Kobayashi, 1962, p.
360 130):

361
362 “[A] session of the proposed Commission on Tephrochronology was held yesterday afternoon. The significance of
363 studies on volcanic ash layers as a key [means] of correlation of events in the Quaternary was [described] by the
364 chairman and [the] establishment of a commission to promote the international co-operation of this matter was
365 discussed. As a result of discussion, [and] considering the significance of investigation to clarify the sequence of
366 events in ... Quaternary volcanic activities, and also considering eolian Quaternary volcanic ash layers to be useful as
367 a key [method for] correlation of ... Quaternary formations, geomorphic surfaces and so on, the following persons
368 cited below agreed to propose the foundation of the Commission on Tephrochronology in INQUA.
369

370 They ask the General Assembly to agree [to] the foundation of a new commission and appoint Prof. Kobayashi as the
371 organizer [chair/president] of the commission. The [president] should arrange the organization of the Commission on
372 Tephrochronology till the following Congress of INQUA 1965 and report the activities of the commission after this
373 congress.”

374
375 The resolution was signed by E.H. Muller (USA), N.T. Moar (New Zealand), Ladislav Báñesz
376 (Czechoslovakia), F. Mancini (Italy), H.D. Kahlke (Germany), P. Bellair (France), T.L. Smiley (USA), T.
377 Yoshikawa (Japan), and Shoji Horie (Japan) (Kobayashi, 1962, p. 130). The following day on 7 September,
378 1961, it was adopted by the General Assembly of INQUA with Kobayashi declared the commission's
379 founding president (Kobayashi, 1962, 1965) (see Sect. 4 below).

380 We note here that Neustadt (1969, p. 90) referred to the commission (which was the eighth to be
381 formed in INQUA's history) as the “Commission pour la téphrochronologie”, i.e., Commission *for* rather than
382 *on* tephrochronology. However, we prefer ‘on’ as reported by Kobayashi (1962, 1965), and COT forms a
383 mellifluous acronym. Also, it seems that Kobayashi was the sole officer (president) within COT from 1961 to
384 1969. By the start of the 1969 Paris Congress, two other commissions in INQUA similarly comprised just a
385 president, but the remaining seven commissions had either two or three officers (Neustadt, 1969).

386 Interestingly, prior to the Warsaw resolution, Kobayashi had received a letter of support for the
387 commission from Sigurdur Thórarinsson, regarded by many as the founder of the science of tephrochronology
388 (Steinthórsson, 2012), with IAVCEI awarding a medal in his honour every four years. Thórarinsson

389 emphasised that the term ‘tephrochronology’ rather than ‘ash’ should be used in the commission’s name. In
390 his letter of 1961, Thórarinsson defined tephrochronology as “chronology based on the study of the successive
391 deposits of fragmental volcanic products” (Thórarinsson, 1965, p. 785). This definition relates to the original
392 sense (*sensu stricto*) of the term tephrochronology – essentially as proposed by Thórarinsson (1944, 1954) and
393 as outlined in the introduction and Table 1 – namely, the use of tephra layers as isochrons to connect or
394 correlate sequences, and to transfer relative or numerical ages to such sequences where the tephras have been
395 identified and dated. In recent times, however, the term ‘tephrochronology’ has been used more broadly as a
396 portmanteau term to encompass all aspects of tephra studies (including correlating and dating via
397 tephrochronology), and this wider sense (*sensu lato* of Lowe and Hunt, 2001) is preferable in denominating
398 the commission. A list under the heading “Names and addresses of researchers” (Kobayashi, 1965, p. 787)
399 seems to comprise the first (1961–65) general membership of COT (see Sect. 4.2 for an explanation of
400 categories of membership developed later). Twenty scientists representing institutions in 11 countries are
401 recorded, with perhaps the most prominent in tephrochronology *per se* being S. Thórarinsson (Iceland), V.
402 Auer (Finland), H. Straka and J. Frechen (West Germany), J. Healy (New Zealand), R. Wilcox (USA), and K.
403 Kobayashi and S. Kaizuka (Japan).

404

405 2.2 Hosting of commission by INQUA or IAVCEI

406

407 For most of the time since 1961, the commission has been hosted under the umbrella of INQUA (Table 2), but
408 with the creation of the new COT in 2019, the collective is now hosted by IAVCEI, where the group was, in
409 effect, temporarily housed between 1982 and 1987. The penultimate incarnation, INTAV, was formed in 2007
410 as an International Focus Group (IFG) within the newly-formed Stratigraphy and Chronology Commission
411 (SACCOM) of INQUA (Table 2). INTAV operated under the INTREPID projects I and II (2009–2015,
412 ‘Enhancing tephrochronology as a global research tool’) and then the EXTRAS project (2015–2019,
413 ‘EXTending TephRAS as a global geoscientific research tool stratigraphically, spatially, analytically, and
414 temporally within the Quaternary’) (Lowe, 2013, 2015, 2018a).

415 Most recently, discussions at the ‘Tephra Hunt’ meeting in Romania in 2018 led to an almost
416 unanimous decision to form a new commission (COT) within the IAVCEI framework rather than INQUA.
417 The rationale for change is outlined in Lowe et al. (2018), and some of the difficulties of INQUA’s
418 cumbersome structure and processes were expressed by Ashworth (2018). The main reason for switching to
419 IAVCEI was that the global tephra community very strongly indicated that it wanted to remain part of a
420 formal and, critically, *ongoing* global collective of tephra specialists as a *stand-alone entity*. This stand-alone
421 status was available within IAVCEI (which, as a commission, would be a potential recipient of funding from
422 that parent body) but not within INQUA. It would also allow for regular meetings of members at *specialist*
423 *tephra conferences or workshops* rather than members taking part as specialists within conferences for other
424 disciplines or multiple disciplines (important though such meetings are). Within INQUA, the original

425 commissions such as COT had been replaced by subcommissions in 2003 at the Reno INQUA Congress, and
426 then removed entirely because five much broader, over-arching commissions (including SACCOM) were
427 formed in 2007 at the Cairns INQUA Congress. These new broad commissions adopted a project-based
428 approach rather than relying on the small individual commissions, some of which were inactive, to initiate and
429 undertake projects involving IFGs including INTAV. But such focus groups had a limited shelf-life, normally
430 two inter-congress periods (i.e., eight years) at most, after which they were to end, although INTAV managed
431 to persist, somewhat aberrantly, for 12 years.

432 Another reason for change relates to the considerable efforts that were needed to justify the continuation
433 of the INTAV focus group to INQUA. Such efforts included preparing annual reports and bidding for and
434 reporting on the INTREPID and EXTRAS projects; reports were also required for *Quaternary Perspectives*,
435 the INQUA newsletter (e.g., Lowe, 2013, 2015, 2018a, b). The increased burden of maintaining some version
436 of COT within INQUA, the continual need to justify its existence annually, and the loss of a structural model
437 within which it could exist as a coherent, ongoing group ultimately led to the decision to move to IAVCEI in
438 2019. Moreover, the move allows for greater stability and a more predictable workload for the executive
439 officers.

440 Given the past support and long history associated with the commission's affiliation with INQUA, the
441 decision for change was not taken lightly. It is emphasised that cooperation and involvement in quadrennial
442 INQUA congresses are not precluded – in fact such involvement is welcomed – under the new arrangement
443 with IAVCEI. Unfortunately, however, the rapid emergence of COVID-19 in 2020, and its commensurate
444 impacts, have severely limited planning and future activities. The next specialist tephra meeting of COT in
445 Sicily, originally planned for 2020/2021, is delayed provisionally until September, 2024. However, tephra
446 symposia and other activities planned for the next IAVCEI Scientific Assembly in Rotorua, New Zealand (in
447 late January/early February, 2023), and for the next INQUA Congress in Rome, Italy (in July, 2023), currently
448 appear be going ahead.

449

450

451 **3 Development of the commission through specialist conferences and other activities**

452

453

454 Nine international specialist tephra-focussed field conferences, led by 23 convenors in total and attracting
455 between 37 and 92 participants, have been organised in seven different countries around the globe since 1964
456 (Table 3). Each meeting, including some stand-out aspects, is described briefly below (Sect. 3.1 to 3.10). They
457 have been referred to as 'inter-congress' or 'inter-INQUA' conferences because of their occurrence between
458 the four-yearly, full-congress meetings of INQUA. Three of the nine meetings have been held in Japan. In
459 terms of the entire 60-year history, the number of meetings has doubled in the last 30 years, with six meetings
460 taking place since 1991 (i.e., approximately every five years on average). The average number of participants
461 at each meeting is 58. The field conferences are exceptionally important because they not only facilitate an

462 opportunity for the presentation and discussion of the latest advances in tephra studies or their application, but
463 also they provide exceptional insight into the geological, palaeoenvironmental, and archaeological history of a
464 specific region encompassing the conference location (Davies and Alloway, 2006). Furthermore, Lowe et al.
465 (2018, p. 1) noted that “one of the joys of science, and tephrochronology and volcanic studies in particular, is
466 the opportunity to meet like-minded colleagues and keen students in the field where formalities and reserve
467 seem to dissipate in the face of shared interests, friendly discussions at the outcrop, and in meeting new people
468 and cultures whilst being graciously hosted in new countries.” As well, the conferences provide opportunities
469 and critical support (including mentoring) and inspiration for ECRs including PhD and masterate students. We
470 also record some of the many other activities undertaken by members of COT in addition to the specialist
471 tephra meetings (Sect. 3.11).

472

473 3.1 Tokyo, Japan, 1964

474

475 The first stand-alone specialist tephra meeting of COT took place in Tokyo, Japan, from 26–29 November,
476 1964. Including field excursions to see Asama volcano and sites in Tokyo (Ikuta, Chitose, Todoroki) (Fig. 2),
477 the meeting attracted 50 participants, seven from beyond Japan including Sigurdur Thórarinsson (Iceland) and
478 dendrochronologist Paul E. Damon (USA), along with Hiroshi Machida (Japan) attending his first COT
479 meeting, who appears to be COT’s longest standing member, 57 years, as at December, 2021. Seven scientific
480 presentations were made (Neustadt, 1969).

481

482

483 **Figure 2.** Some of the participants on a field trip at Ikuta (an important area for Quaternary studies in Japan)
484 during the first COT meeting in Tokyo, November 1964 (from Suzuki et al., 2011, p. 8). We include this
485 figure despite its limitations because it is the only known photograph available from the first meeting.

486 **Table 3.** List of nine international tephra-centred field meetings of the commission and outputs*

488	2018 – Tephra Hunt in Transylvania, Moieciu de Sus, Romania (24 June–1 July, 92 participants) ¹
489	<i>Convenors:</i> Daniel Veres, Ulrich Hambach
490	2010 – Active Tephra in Kyushu, Kirishima, Japan (9–17 May, 76 participants) ²
491	<i>Convenors:</i> Takaaki Fukuoka, Hiroshi Moriwaki, Takehiko Suzuki
492	2005 – Tephra Rush in Yukon, Dawson City, Canada (31 July–8 August, 41 participants) ³
493	<i>Convenors:</i> Duane Froese, John Westgate (with Brent Alloway)
494	1998 – Tephrochronology and Co-existence of Humans and Volcanoes (Inter-INQUA and Inter-IUSPP), Brives-
495	Charensac (Haute-Loire), France (24 August–1 September, 53 participants) ⁴
496	<i>Convenors:</i> Étienne Juvigné, Jean-Paul Raynal
497	1994 – Tephrochronology-Loess studies-Paleopedology, Hamilton, New Zealand (7–17 February, 62
498	participants) ⁵
499	<i>Convenor:</i> David J. Lowe
500	1993 – Climatic Impact of Explosive Volcanism (PAGES/INQUA-COT Workshop), Meiji University, Chiyoda-
501	ku, Tokyo, Japan (1–5 December, 37 participants) ⁶
502	<i>Convenors:</i> Hiroshi Machida, James (Jim) Begét
503	1990 – Mammoth Hot Springs, Yellowstone National Park, USA (17–26 June, 53 participants) ⁷
504	<i>Convenors:</i> John Westgate, Nancy Naeser, Bill Hackett
505	1980 – Tephra Studies as a Tool in Quaternary Research, Laugarvatn (and Reykjavík), Iceland (18–29 June, 60
506	participants) ⁸
507	<i>Convenors:</i> Stephen Sparks, Stephen Self, Guðrún Larsen (with Sigurdur Thórarinsson)
508	1964 – Tephra Field Meeting of COT (inaugural meeting), Tokyo, Japan (26–29 November, 50 participants)
509	<i>Convenors:</i> Kunio Kobayashi, Sohei Kaizuka, Takeshi Matsui
510	

511 *Special tephra-focussed volumes/issues arising from these meetings as outputs are as follows: 1, Abbott et al. (2020b);
512 2, Lowe et al. (2011b); 3, Froese et al. (2008c); 4, Juvigné and Raynal (2001b); 5, Lowe (1996c); 6, Begét et al. (1996);
513 7, Westgate et al. (1992b); 8, Self and Sparks (1981c). Two further substantial publications developed by the commission
514 comprise Westgate and Gold (1974) (see Sect. 3.2), and Lane et al. (2017b), the latter deriving from tephra symposia at
515 the Nagoya INQUA Congress (2015). Note also three tephra-related volumes by Firth and McGuire (1999), Hunt
516 (1999b), and Austin et al. (2014b) that arose indirectly or directly from specialist tephra or explosive-volcanism meetings
517 in the UK.

518

519

520 3.2 Significant change after INQUA Congress, Christchurch, New Zealand, 1973

521

522 At the 1964 Tokyo COT meeting, the decision was taken to develop and publish a world bibliography of
523 Quaternary tephrochronology (Westgate, 1974). The agreement was reinforced at the 1965 INQUA Congress
524 in late August/early September at Boulder, USA, at a COT session that included representatives from
525 institutions in ten counties (Neustadt, 1969). Kunio Kobayashi and Roald ('Fryx') Fryxell handled the project
526 initially and then John Westgate took over on his election as secretary of COT at the INQUA Congress in
527 Paris in 1969. Westgate had first become involved with COT at the 1965 INQUA Congress in Boulder, and
528 has thus been a member for 56 years as at December, 2021. An ambitious deadline for completing the book's
529 compilation was set for December, 1971 (Steen-McIntyre, 1971). Substantial grants to COT provided by
530 INQUA and other funders in the early 1970s enabled the volume, entitled *World Bibliography and Index of*
531 *Quaternary Tephrochronology*, to be published by Westgate and Gold (1974), ten years after it was first
532 mooted (Kaizuka, 1974).

533 Amongst a treasure trove of wide-ranging information, the volume contains an update by
534 Thórarinsson (1974) on the term 'tephra' twenty and thirty years on, respectively, from the definitions he

535 wrote in 1954 and 1944. In 1973, Thórarinsson, an influential ‘formal member’ of COT at the time (later an
536 honorary president of the commission from 1977–1982), was successfully persuaded at the 1973 INQUA
537 Congress in Christchurch, New Zealand, that the term ‘tephra’ be broadened to include unconsolidated
538 pyroclastic flow/density current deposits, i.e., non-welded ignimbrites, as well as ‘airborne’ fall deposits (Cole
539 et al., 1972; Howorth, 1975; Westgate and Fulton, 1975; Thórarinsson, 1981). Although endorsed by COT,
540 this amplification was considered by some to have ruined the use of the word ‘tephra’ (*sensu stricto*), and
541 there are still tephrochronologists who do not use the wider meaning (*sensu lato*) of the word (Vince Neall
542 personal communications, 2017, 2021). Even though Thórarinsson’s (1954) definition did not specifically
543 exclude flow deposits, Neall (1972, p. 510) argued that because pyroclastic flow deposits ‘flow from a crater
544 during an eruption’ they should not be considered ‘tephra’ and hence should be classified separately as ‘flow
545 deposits’. Also, the original meaning of ‘tephra’ was retained by Crandell and Mullineaux (1978) and
546 Crandell et al. (1979), for example, because this narrower meaning was better suited to their volcanic hazard
547 analyses (Vince Neall personal communication, 2017). Similarly, Gage (1977, p. 11) rued that the ‘extension
548 of meaning seems rather to detract from the value and clarity of the term’.

549 Nevertheless, by 1973–74, the term ‘tephra’ (*sensu lato*) (Table 1) was no longer restricted to fall
550 deposits because it had been recognised that ignimbrites could be partly or entirely non-welded and
551 unconsolidated (Ross and Smith, 1961; Sparks et al., 1973; Schmid, 1981; Froggatt and Lowe, 1990).
552 Previously, the term ‘ignimbrite’, first used by Marshall (1932, 1935), was employed only for welded deposits
553 (Cole et al., 1972, p. 686–7; Freundt et al., 2000; Lowe and Pittari, 2019) which, being ‘mainly consolidated’,
554 are also referred to as ‘pyroclastic rocks’ (following definitions in Schmid, 1980; Le Maitre, 2002).
555 Furthermore, it was argued by Thórarinsson (1974), who had used the term ‘tephra flow’ to describe a small
556 pyroclastic flow descending slopes of Mt. Lamington in an eruption in 1951, and also for the non-welded
557 uppermost layer of the Thorsmörk ignimbrite in Iceland (Thórarinsson, 1969), that such flow deposits, strictly,
558 were ‘airborne’ in their emplacement (e.g., Sheridan, 1979; Wilson, 1985; Branney and Kokelaar, 2002; Lube
559 et al., 2019). Finally, most agree that the term must also include co-ignimbrite ash-fall deposits (Machida and
560 Arai, 1976; Sparks and Walker, 1977; Crandell and Mullineaux, 1978; Cas and Wright, 1987) that arise from
561 fallout of ash-rich convective plumes formed by the buoyant detachment of a gas-ash mixture (‘ash cloud’), or
562 by elutriation, from the top of a pyroclastic flow (density current) (Bitschene and Schmincke, 1990; Brown
563 and Andrews, 2015; Cioni et al., 2015). We note that the term ‘air-fall’ is now rarely used, with tephra-
564 fall/fallout, or ash-fall/fallout if appropriate, typically employed instead (Cole et al., 1972; Schmid, 1981;
565 Lowe and Hunt, 2001; Lowe, 2008).

566
567
568
569
570

571 3.3 Laugarvatn and Reykjavík, Iceland, 1980

572

573 The next specialist tephra conference, in June, 1980, took place 16 years after the 1964 Tokyo meeting. Held
574 mainly in Laugarvatn (also Reykjavík), Iceland, it was supported by the NATO Advanced Studies Institute
575 and COT (Self and Sparks, 1981a, b) (Fig. 3).

576

577

578

579 **Figure 3. (Left)** Logo for the Icelandic INQUA-COT tephra meeting in June 1980 that was designed by Sue
580 Selkirk (Arizona State University) (Self and Sparks, 1981a), depicting the distribution of the historic silicic
581 tephra, H₁, erupted from Hekla in 1104 AD, the outermost isopach being 2 mm. The isopach map is based on
582 Thórarinsson (1970, p. 306) and Larsen and Thórarinsson (1977, p. 29), although it was originally mapped by
583 Thórarinsson in 1939 (Steinthórsson, 2012, p. 5). **(Right)** Some participants in the field in Iceland during the
584 meeting. Figure centre-front with blue coat and ubiquitous red hat (Noe-Nygaard, 1984) is Sigurdur
585 Thórarinsson; alongside him are Guðrún Larsen, conference co-organiser (with woollen hat, looking down)
586 and (Sir) Stephen Sparks (with sample bag). Photo: Malcolm Buck.

587

588

589 At this Iceland meeting, it is striking that Self and Sparks (1981a, p. xii), copying Thórarinsson (1974,
590 p. xviii), defined 'tephra' (*sensu lato*) as "a collective term for all airborne pyroclasts, including both air-fall
591 and pyroclastic flow material", pointing out that "this usage complements rather than replaces terms such as
592 ignimbrite, welded tuff, pumice, etc., that are used to designate specific types of tephra produced by
593 distinctive types of eruption". Also, as evident on the conference logo image in Fig. 3, they referred to the
594 Commission on 'Tephra', rather than 'Tephrochronology', presumably because the latter term was seen to be
595 somewhat restricted in its original sense (use of tephra layers as a correlational and age-equivalent dating tool)
596 so that potential additional volcanological interpretations and applications appeared to be downplayed. Later,
597 advent of the names Commission (or Subcommission) on Tephrochronology and Volcanism – i.e., COTAV or
598 SCOTAV in 1995 and 2003, respectively (Table 2) – made 'volcanology' an explicit function of the
599 commission. However, as noted previously, today's more holistic usage of 'tephrochronology' (*sensu lato*),

600 encompassing all aspects of tephra studies including volcanology, now negates this argument and obviates the
601 need to include 'volcanism' in the modern commission's name (Lowe and Hunt, 2001; Lowe, 2008). (Also,
602 COT, being sponsored by IAVCEI, has an obvious volcanological connection.)

603

604 3.4 Mammoth Hot Springs, USA, 1990

605

606 The tephra meeting in 1990 in Mammoth Hot Springs (Yellowstone National Park), Wyoming, USA, was
607 next, the first of what might be deemed a 'golden decade' in which four specialist tephra conferences were
608 held (Table 3). The meeting in Mammoth, under the ICCT banner, comprised around 53 participants, the
609 majority from the USA but with representatives also from Canada, Japan, New Zealand, Australia, Belgium,
610 Tanzania, Ethiopia, and the UK (Fig. 4). Some scientists from the USSR and several other countries were
611 unable to attend because of financial limitations or (in the case of the Soviets) a lack of flights at that
612 tumultuous time (Lowe, 1990b).

613

614

615 **Figure 4. (Upper)** Participants of the ICCT tephra meeting held in Mammoth Hot Springs, Yellowstone
616 National Park, USA, June, 1990. Photo: anonymous. **(Lower)** Participants in the field on 4 December, 1993,
617 near Haruna volcano, northern Kanto, Japan, during the PAGES/INQUA-COT workshop on the climatic impact
618 of explosive volcanism. Photo: anonymous. Names of participants as follows: *standing at back* (from left):
619 Fusao Arai, Hiroshi Machida, Takehiko Mikami, David Pyle, Tom Simkin, Janice Lough, David Lowe, James
620 Begét, Greg Zielinski, Katherine Hirschboeck, Haraldur Sigurdsson, Tsutomu Soda, Takeshi Noto, Nat Rutter,
621 Koji Okumura; *crouching in front* (from left): (anon), Makiko Watanabe, Takehiko Suzuki, Suzanne Leroy,
622 Valerie Hall, Hiroshi Moriwaki, Takaaki Fukuoka, Sumiko Kubo, Mika Kohno, Tatsuo Sweda, Kunihiko Endo,
623 Shinji Nagaoka.

624 Presentations featured a notable array of new dating techniques for tephra components such as
625 isothermal-plateau fission-track dating (ITPFT) of glass, single-crystal laser fusion analysis using $^{40}\text{Ar}/^{39}\text{Ar}$,
626 luminescence dating, high-precision radiocarbon (^{14}C)-dating using liquid scintillation spectrometry, and the
627 application of discriminant function analysis to classify and correlate tephras based on their glass-shard major-
628 element compositions. In addition, reports from ICCT working groups were presented, including one to
629 standardise the characterization of tephra deposits, the role of tephra in land-sea correlations, and the
630 development of a catalogue of widespread Quaternary tephras. Five days were spent in the field (six or seven
631 counting the days travelling overland to and from Mammoth), two being in the Yellowstone Park region of the
632 Yellowstone Plateau Volcanic Field, and three on a post-conference tour looking mainly at Yellowstone
633 tephra localities, Quaternary deposits and, occasionally, soils and paleosols in northern Yellowstone National
634 Park and the northern Bighorn Basin, Wyoming (Lowe, 1990b).

635 A conspicuous outcome of the Mammoth conference was the publication of the first of a number of
636 proceedings in the journal *Quaternary International*, which was founded in 1987 and is owned by INQUA
637 (and therefore returns a profit to the union to help fund its activities) (Catto, 2019). The Mammoth conference
638 special issue, entitled straightforwardly as ‘Tephrochronology: stratigraphic applications of tephra’ and
639 comprising 27 scientific papers, was an early double-volume of the journal (Westgate et al., 1992a, b).

640
641 3.5 Tokyo, Japan, 1993
642

643 The Tokyo meeting in 1993, co-sponsored by the Past Global Changes (PAGES) Core Project of the
644 International Geosphere-Biosphere Programme (Oldfield, 1998) and INQUA’s COT, was the first to be
645 designated as a field conference *and workshop* because it focussed on a specific theme, namely the impact of
646 volcanism on climate. As well as spending time in the field (Fig. 4) and in oral presentations, the 37
647 participants (representing institutions in six countries) were therefore involved in break-out sessions in four *ad*
648 *hoc* working groups:

- 649 • Modelling studies, ice cores, frozen ground, historic, and non-biological records
- 650 • Tree-rings, palynology, corals (biological records)
- 651 • Volcanology and climate components
- 652 • Tephrochronology.

653 Their task was to answer a series of topical questions and to synthesise ideas and data. A final discussion
654 session led to a series of recommendations that were published in a detailed report by Begét et al. (1996).

655
656 3.6 Hamilton, New Zealand, 1994
657

658 The meeting in Hamilton, on New Zealand’s North Island, in February, 1994, as well as being the first in the
659 Southern Hemisphere, was noteworthy in being the first to be held under the INQUA banner that involved

660 three commissions: tephrochronology, loess studies, and paleopedology. The conference included a special
 661 symposium, the 'C.G. Vucetich Symposium on Tephrostratigraphy and Tephrochronology in New Zealand'.
 662 The 62 participants (including 12 students) from institutions in 12 countries (Fig. 5) spent two days in the field
 663 during the conference and a group of 35 took part in the five-day post-conference North Island field trip
 664 (Lowe, 1994b). Along with the field guides, the proceedings took up three slender but contiguous volumes of
 665 *Quaternary International* and comprised 27 scientific papers (Lowe, 1996b, c).

666

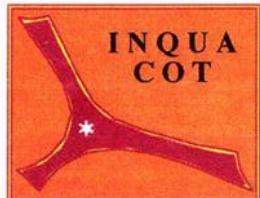
667
668

669 **Figure 5. (Upper)** Participants in the integrative triple-discipline (tephra-loess-paleosols) meeting at
 670 University of Waikato, Hamilton, New Zealand, photographed on 8 February, 1994. Photo: Ross Clayton
 671 (University of Waikato). Names of participants as follows: *standing at back* (from left): Takehiko Suzuki,
 672 Hiroshi Moriwaki, Sue Donoghue, Brent Alloway, John Westgate, Dennis Eden, Amanjit Sandhu, Yoshitaka
 673 Nagatomo, Keiji Takemura, Liping Zhou, Akira Hayashida, Étienne Juvigné, (anon), Jun'ichi Kimura, John
 674 Bruce, James Begét, Kotaro Yamagata; *standing* (from left): Roma Lane, David Manning, John Hunt, Shane
 675 Cronin, Peter Almond, Alan Palmer, Takuo Yokoyama, Yoshinaga Shuichiro, Gordon Curry, Ken Veresub,
 676 Colin Vucetich, Margaret Vucetich, Carolyn Olson, Michael Singer, Takashi Sase, (anon), Richard Hay, Peter
 677 Kamp; *seated* (from left): Hiroshi Machida, Jiaqi Liu, Carol Smith, Alan Hull, Colin Wilson, Milan Pavich,
 678 Brad Pillans, Glenn Berger, Liddy Bakker, David Lowe, Phil Tonkin, Kerry Stevens, Bernd Strieweski,
 679 Graham Shepherd, John Catt, Janet Slate; *crouching in front* (from left): Benny Theng, Arno Kleber, Jim
 680 Dahm, Roger Briggs, Peter Hodder, Tim Naish, Michael Green, Mike Vennard, Denis-Didier Rousseau,
 681 Andrew Hammond. **(Lower) (Left)** Front page of flyer prepared prior to the meeting in New Zealand.
 682 **(Middle)** Brad Pillans exposing buried soil horizons (paleosols) formed on early Holocene, Taupo volcano-
 683 derived rhyolitic tephras overlying steeply dipping reworked Oruanui eruptives deposited into a temporary

684 lake, Lake Taupo forest area, central North Island, on the first day of the post-conference field trip (13
685 February, stop 7; Wilson, 1994). (Right) Colin Wilson explaining the stratigraphy of mid-Holocene Taupo-
686 derived eruptives (~5.4–4.5 cal ka) with intervening soil horizons near southern Lake Taupo (13 February,
687 stop 11; Wilson, 1994). Photos: David Lowe.
688

689

690 3.7 Brives-Charenac, France, 1998


691

692 The meeting held in Brives-Charenac in the Haute-Loire region of southern France from 24–29 August, 1998,
693 with 53 participants from institutions in 11 countries, successfully brought together tephrochronology and
694 volcanism (as represented by COT) and their relationship to humans in antiquity (Fig. 6). The latter aspect
695 was represented by Commission 31, 'Humans and Active Volcanoes during History and Prehistory', of the
696 International Union of Prehistoric and Protohistoric Sciences (IUSPP) (Table 3).

697

Brives-Charenac, Haute-Loire, France, 24–29 août 1998, Maison Pour Tous

698
699 **TEPHROCHRONOLOGIE ET CO-EXISTENCE HOMMES-VOLCANS**
700 **TEPHROCHRONOLOGY AND COEXISTENCE HUMANS-VOLCANOES**

701

702 **Figure 6. (Upper)** Participants in the tephra meeting held in Brives-Charenac, France, in August, 1998.
703 Photo: Jean-Paul Raynal. **(Lower)** (Left) Part of cover page for programme/abstracts volume of the meeting,
704 The COT logo – a three-armed bubble-junction (cuspatate) glass shard with an electron probe (or laser) beam
705 spot on it – was designed by Paul van den Bogaard (Germany). (Right) After COT became INTAV in 2007,
cartographer Betty-Ann Kamp (University of Waikato) updated the logo in 2008 as shown here.

706 By this time, a logo for the commission had been developed by Paul van den Bogaard (Fig. 6),
707 possibly in anticipation of the tephra-based field trip to the Eifel Volcanic Field undertaken prior to the Berlin
708 INQUA Congress held in August, 1995 (Lowe, 1995). The Brives-Charenac conference was followed by a
709 three-day post-conference field trip across the Massif Central volcanic fields. Although it had been originally
710 planned that the conference proceedings would appear in the journal *Quaternaire*, the large number of papers
711 accepted, 27 in total, rendered that option impractical. Remarkably, a new journal, *Les Dossiers de l'Archéo-*
712 *Logis*, was established in which all the papers were eventually published (Juvigné and Raynal, 2001a, b).

713
714 3.8 Dawson City, Canada, 2005
715

716 Seven years passed before the spectacular 2005 'Tephra Rush' meeting, now under the banner of SCOTAV,
717 was held mainly in Dawson City, Yukon Territory, Canada (Fig. 7; Alloway et al., 2005). The meeting,
718 comprising 41 participants from institutions in 11 countries (Table 3), began with an evening public lecture in
719 Whitehorse by volcanologist and author Grant Heiken, thereby helping to enhance public dissemination of
720 tephra-based research (one of the aims of the commission: see Sect. 5.1 below). Heiken explored the different
721 human perceptions of volcanoes and the risks of living in the shadow of a volcano. A second public lecture
722 was given during the conference in Dawson by Paul Matheus on the topic of Beringian mammals.

723 A one-day field trip en route from Whitehorse to Dawson took place on 1 August, 2005. It included
724 inspection of the AD 833–850 White River Ash (eastern lobe) (Fig. 7). The eruption of this tephra was
725 coincident with the transition in southern Yukon from atlatl and throwing-dart technology to adoption of bow
726 and arrow, which were likely present a few hundred years earlier in southern Alaska. Possibly a proto-
727 Athapaskan population inhabiting the region was strongly affected by the ecological impacts of the volcanic
728 eruption and migrated, at least temporarily, from the thick tephra-fall region to encounter this technology
729 (Davies and Alloway, 2006). Diminutive forms of the same White River ash were recognised by Jensen et al.
730 (2014) as a cryptotephra in Greenland and northern Europe (where it is dated AD 846–848), the first record of
731 the 'transatlantic distribution' of tephra. Two days were spent in the Klondike Goldfields during the
732 conference itself (Davies and Alloway, 2006).

733

734
735

736 **Figure 7. (Upper)** Participants in the 2005 'Tephra Rush' meeting on 3 August, 2005, in Dawson City,
737 Yukon Territory, Canada (from Froese et al., 2008a, p. 2). Photo: Brent Alloway. Names of participants as
738 follows: *standing in arc around the back* (from left): Hiroshi Machida, Takaaki Fukuoka, David Lowe,
739 Roland Gehrels, (anon), Stefan Wastegård, Warren Huff, Phil Shane, James Riehle, (anon), (anon), (anon),
740 John Westgate; *seated directly in front of back row* (from left): Hiroshi Moriwaki, (anon), (anon), Siwan
741 Davies, Brad Pillans, (anon), (anon); *seated second row from front* (from left): Shari Preece, Takehiko Suzuki,
742 Paul Matheus, (anon), Nick Pearce, Duane Froese; *seated front row* (from left): Kaori Aoki, (anon), James
743 Begét, Maria Gehrels, Brent Alloway, Caitlin Buck, Britta Jensen, Grant Heiken. **(Lower)** John Westgate
744 (with megaphone) and Duane Froese on 1 August, 2005, explaining the stratigraphy, chronology,
745 composition, and distribution of the AD 833–850 White River Ash (eastern lobe) on the pre-conference trip
746 from Whitehorse to Dawson (Froese et al., 2005). Photo: Brad Pillans.
747
748

749 The subsequent special issue of *Quaternary International*, edited by Froese et al. (2008c), comprised
750 20 scientific articles based on presentations at Dawson, as well as from a special session of the annual
751 Geological Society of America conference (held in Salt Lake City in October, 2005) entitled 'Advances and
752 Applications of Tephrochronology and Tephrostratigraphy: in Honor of Andrei M. Sarna-Wojcicki'. The
753 special issue by Froese et al. (2008c) was the first by the commission to specifically honour in its title two of
754 the biggest names in tephrochronology, John Westgate and Andrei Sarna-Wojcicki (Froese et al., 2008b; Slate
755 and Knott, 2008).

756 3.9 Kirishima City, Japan, 2010

757

758 In 2010, the commission returned to Japan where a meeting was held in Kirishima City in southern Kyushu
759 from 9–17 May, 2010, this time under the INTAV banner. One reason for the meeting to be hosted in Japan
760 was to expose the emerging cohort of cryptotephra specialists (who tended to work only on sparse shards from
761 mainly distal or ultra-distal locations) to proximal pyroclastic and volcanic deposits as a way of broadening
762 their experience and deepening understanding. The conference was held during a lull in the 2010 eruptions of
763 Eyjafjallajökull in Iceland, with the latter's on-and-off behaviour (Gudmundsson et al., 2010; Davies et al.,
764 2010) creating opportunities for considerable press interest in the meeting (including local TV coverage of a
765 special public session on the Icelandic eruptions and impacts, which featured presentations by Chris Hayward,
766 Siwan Davies, and Thor Thordarson) and considerable headaches for travel arrangements (Holt and Lowe,
767 2010). Of the 76 participants in attendance from institutions in 12 countries, a substantial proportion (25)
768 comprised students. At the start of the conference, two consecutive public lectures to an audience of around
769 800 in Kirishima's City Hall were given by David Lowe ('Connecting with our past: using tephras and
770 archaeology to date the Polynesian settlement of Aotearoa/New Zealand'), Lowe's talk being translated into
771 Japanese as he spoke, and Hiroshi Machida ('Widespread tephras originating from Kagoshima occurring in
772 northeast Asia and adjacent seas'). In addition, the Mayor of Kirishima City, Shuji Maeda, graciously invited
773 the entire conference group to his personal residence for a spectacular banquet early in the conference which
774 included the use of dining 'rooms' in caves cut into exposures of 30-cal-ka Ito ignimbrite (see below) at the
775 property.

776 New work on the tephrostratigraphic record of ice cores was presented as well as new protocols
777 involving electron probe microanalysis (EPMA), and laser-ablation inductively-coupled plasma mass
778 spectrometry (LA-ICP-MS) analysis, of glass shards considerably smaller than previously attainable (~5 and
779 ~10 µm in diameter, respectively). The revolutionary rise of Bayesian flexible age-depth modelling, which has
780 helped to dramatically improve age frameworks for tephras and cryptotephras, was also reported (e.g.,
781 Blockley et al., 2007; Lowe et al., 2008b; Bronk Ramsey et al., 2015a; Blaauw et al., 2018).

782 An influential letter was written during the conference by the COT president and secretary on behalf
783 of INTAV to the Secretariat of the Japan Geopark Committee. Signed by more than 50 conference
784 participants, the letter supported the application by Kirishima City for the Kirishima volcano system
785 ('Kirishima Mountains') to become an accepted member of Geoparks Japan as Kirishima Geopark. The park
786 was successfully certified as such later that year.

787 The meeting also featured two days in the field, during the first of which participants witnessed
788 several small eruptions of Sakurajima just a few minutes after participants arrived at the stop (Fig. 8). Such
789 impressive 'organisation' was greatly admired by all! As well, numerous spectacular sections and excavations
790 were viewed over the two-day trip, including a gigantic outcrop featuring the voluminous Ito ignimbrite (~30
791 cal ka) (Fig. 8). This deposit is coeval with a widespread co-ignimbrite ash-fall, first recognised in 1976,

792 named Aira-Tanzawa ash (Aira-Tn) (Machida and Arai, 1976, 1983, 2003). A three-day post-conference field
793 trip across Kyushu also took place, and included visits to Unzen volcano, Aso caldera, and Kuju and Yufu-
794 Tsurumi volcanoes. Unusually, participants on the post-conference trip were given a small refund at the end,
795 such was the efficiency and generosity of the leaders.

796

797

798

799 **Figure 8. (Upper)** Participants of the 'Active Tephra' meeting held in Kirishima in May, 2010, in the field on
800 Kyushu, Japan. Sakurajima volcano (just visible in the background) erupted later that day during the trip (see
801 below) (from Lowe et al., 2011a, p. 2). Photo: Koji Okumura. **(Lower) (Left)** Thick coastal exposure of Aira
802 tephra formation (erupted ~30 cal ka from Aira caldera) near Fumoto on the eastern coast of Kagoshima Bay
803 and visited 13 May, 2010. Initial deposits comprise plinian fall deposits (Osumi pumice) overlain by thin
804 stratified (intra-plinian) pyroclastic flow deposits (Tarumizu ignimbrite) and then by thick, mainly non-welded
805 ignimbrite, Ito ignimbrite (bulk volume >450 km³). Photo: David Lowe. **(Middle)** Small vulcanian eruption
806 from active Showa crater (Minamidake crater), Sakurajima volcano, one of two witnessed on 12 May. Photo:
807 David Lowe. **(Right)** Participants examining Holocene tephras and humic buried soil horizons at Tenjindan
808 archaeological site of Joman era on Osumi Peninsula near Kagoshima Bay, southern Kyushu, on the mid-
809 conference field trip (13 May). The bright yellowish-orange tephra about 1.2 m below the land surface is
810 Kikai-Akahoya tephra aged ~7.3 cal ka. Artefact locations are marked with tags in the foreground (Moriwaki
811 and Lowe, 2010). Photo: David Lowe.

812

813

814

815

816

The conference proceedings, published in *Quaternary International* and comprising a record 31 scientific papers (Lowe et al., 2011b), were dedicated to the memory of Shinji Nagaoka (Moriwaki et al.,

817 2011a). Editor-in-chief for *Quaternary International* at the time, Norm Catto, described this QI volume as
818 “outstanding” and “one of the most commonly downloaded through the Elsevier website” (Norm Catto
819 personal communication, 2013). The volume paid specific tribute to the leading researcher of his generation in
820 Japan, Hiroshi Machida. Of him, Suzuki et al. (2011, p. 6) stated: “Perhaps more than any other geoscientist
821 from Japan, Hiroshi carried the insights and advances of tephra studies and their application in
822 palaeoenvironmental and archaeological research, landscape processes, and volcanology and hazard analysis,
823 to the outside world through a succession of papers and books written in English and through conference
824 presentations”. Machida followed initially in the large footprints of Kunio Kobayashi, who, as well as
825 founding COT, had a similarly compelling, outward-looking role in the 1960s and early 1970s through his
826 development of methods to characterize tephras both in the field and petrographically, and by publishing
827 papers in English to widen their impact (e.g., Kobayashi and Shimuzu, 1962; Momose et al., 1968; Kobayashi,
828 1969, 1972). Kobayashi also encouraged scientists from countries other than Japan to become involved in
829 promoting tephra studies, including through appointment to COT’s executive committee (John Westgate
830 personal communication, 2021).

831

832 3.10 Moieciu de Sus, Romania, 2018

833

834 There was an eight-year period before the next tephra meeting, the ‘Tephra Hunt in Transylvania’ conference
835 held (under the auspices of INTAV) in the Cheile Gradistei Fundata Resort at Moieciu de Sus (near Brașov)
836 set in the dramatic landscapes of the south Carpathian Mountains of Romania. Prior to this meeting, the
837 INTAV committee members for some years had been working on holding a meeting in Chile and Argentina,
838 but changes in circumstances for key personnel meant that it had to be shelved in 2016. The Transylvania
839 meeting, with a theme of ‘Crossing new frontiers’, is the largest tephra meeting of the commission held thus
840 far (Table 3): 92 participants from institutions in 21 countries attended, including 22 students (17 of whom
841 were undertaking PhDs) (Lowe, 2018b). With nearly 100 attending, around double the number of countries
842 normally represented, and the robust mix of senior, experienced, and emerging researchers, this meeting might
843 be considered a ‘coming of age’ for INTAV. It included four days in the field – a one-day mid-conference trip
844 that took in a memorable visit to Bran Castle and a three-day post-conference trip with 32 participants that
845 ended in Bucharest – as well as a public lecture where the complex geological setting of the region was
846 introduced by Ioan Seghedi. A workshop for several dozen participants on Bayesian age modelling was led
847 by Maarten Blaauw (Fig. 9). Such workshops (on various topics) have been a feature of a number of tephra
848 meetings, in some cases the main focus (e.g., Tokyo, 1993; Portland, 2014 and 2017).

849
850

851 **Figure 9. (Upper)** Participants of the Transylvanian 'Tephra Hunt' conference in the Perşani volcanic field on
852 26 June, 2018, in the southern Carpathians, Romania, during the mid-conference field trip (from Abbott et al.
853 2020a, p. 2). Photo: Pierre Oesterle. **(Lower) (Left)** A distal occurrence of Y5 tephra, about 0.6 m thick,
854 associated with the Campanian Ignimbrite eruption c. 39–40 ka of the Campi Flegrei field (Italy), within loess
855 on the Wallachian plains in southeast Romania near the Buzău River. Dan Veres is directly alongside the
856 darker, slightly pinkish, fine-grained Y5 tephra deposit. Photo: David Lowe. **(Right)** Maarten Blaauw (far
857 right) leading a Bayesian age-modelling workshop during the conference on 27 June, 2018. Photo: David
858 Lowe.
859

860 Faithfully following the commission's enduring and important philosophy, only one session of oral
861 papers was run during the Romanian conference (i.e., no parallel sessions were held) so that all participants
862 could see all the talks and thereby support ECRs as well as taking in keynote and other oral presentations.
863 In addition, the organisers placed equal value on poster papers, with all posters being displayed for the entirety
864 of the conference, and they were featured in stand-alone poster presentation sessions. The special volume of
865 ensuing papers, published as a double issue of the *Journal of Quaternary Science* (Abbott et al., 2020b),
866 includes 27 scientific articles and is entitled 'Crossing new frontiers: extending tephrochronology as a global
867 geoscientific research tool'. The volume was dedicated to the memory of Richard Payne (Abbott et al., 2020a;
868 Bunting et al., 2020).
869
870

871 3.11 Other professional activities associated with COT

872 As well as the specialist tephra meetings described above, tephrochronologists of COT have been active since
873 1964 in convening and running tephra-focussed sessions or symposia, or leading field trips, in association
874 with various commissions or full congresses of INQUA or IAVCEI (e.g., Smith, 1986; Eden and Furkert,
875 1988; Saito et al., 2016; Lane et al., 2017b; Hopkins et al., 2021a; Scott, 2021). Collaborative events have
876 additionally been undertaken in conjunction with PAGES (Past Global Changes) (e.g., Hall and Alloway,
877 2004) or other organisations such as the International Geological Congress (IGC), the USA's National Science
878 Foundation (NSF), the Geological Society, London, and the UK's Quaternary Research Association (QRA)
879 (Appendix A).

880 COT members have also been heavily involved in a range of projects including the highly successful
881 INTIMATE Project (which was launched for the North Atlantic region at the 1995 Berlin INQUA Congress)
882 in which tephrochronology has played a pivotal role (e.g., Davies et al., 2002, 2012; Turney et al., 2004a, b;
883 Alloway et al., 2007; Lowe et al., 2008b; Lowe et al., 2008; Moriwaki et al., 2011b; Barrell et al., 2013;
884 Blockley et al., 2014). In addition, studies on tephras or cryptotephras have featured at numerous national or
885 regional meetings or specialist workshops (e.g., Smalley, 1980; Howorth et al., 1981; Suzuki and Nakamura,
886 2005; Dugmore et al., 2011; Benediktsson et al., 2012b; Austin et al., 2014a). Some of these meetings were
887 built around multi-disciplinary projects such as SMART (Synchronising Marine And ice-core Records using
888 Tephrochronology), which was one of the first systematic projects investigating the cryptotephra record
889 preserved within North Atlantic marine deposits (Austin et al., 2014b), and the RESET project (RESpone of
890 humans to abrupt Environmental Transitions) (Lowe et al., 2015) (Appendix A).

891

892 **4 Officers and membership, key events, and post-2007 funding**

893

894 We describe here the leadership of the commission through its elected officers, and the commission's
895 membership, through time. We cover the fortunes of the commission since the 1980s, including key events
896 and protagonists (Sect. 4.3), before concluding with a discussion of funding and its expenditure when the
897 commission operated as INTAV for 12 years from 2007.

898

899 **4.1 Officers of COT and their roles**

900

901 Until the Nagoya INQUA Congress in 2015, the commission committees (also called 'executives'; see also
902 Sect. 4.2) usually comprised three officers elected to serve the needs of COT: a president, vice-president, and
903 secretary (Table 4). A total of 29 people have filled the committee roles over the past 60 years, representing
904 institutions in nine countries. Twenty-two of the officers have represented just four countries: UK (8 officers),
905 New Zealand (5), USA (5), and Japan (4). Around half (14) of the officers have served eight years or more,
906 the longest serving being Kunio Kobayashi (12 years), Takehiko Suzuki (12 years), and David Lowe (16
907 years, over two stints).

908

909 **Table 4.** List of officers of the commission since 1961.
910

Inter-congress period	Name ¹	President	Vice-president (VP)	VP	VP	Past-president (PP)	VP (ECR rep)
2019-on ²	COT* (IAVCEI)	Britta Jensen (CA) ³	Peter Abbott (CH)	Ian Matthews (UK)	Paul Albert (UK)	Takehiko Suzuki (JP)	Jenni Hopkins (NZ)
		President	VP	VP	VP	PP	
2015-2019	INTAV	Takehiko Suzuki (JP)	Britta Jensen (CA)	Peter Abbott (UK)	Victoria Smith (UK) + Siwan Davies (UK)	David Lowe ⁴ (NZ)	
		President	VP	Secretary			
2011-2015	INTAV	David Lowe (NZ)	Takehiko Suzuki (JP)	Victoria Smith (UK)			
2007-2011	INTAV	Siwan Davies (UK)	Phil Shane (NZ)	David Lowe (NZ)			
2003-2007	SCOTAV	Chris Turney (AU)	Siwan Davies (UK)	Brent Alloway (NZ)			
1999-2003	COTAV	Étienne Juvigné (BE)	Valerie Hall (UK)	Chris Turney (UK)			
1995-1999	COTAV/ COTS	James Begét (US)	Étienne Juvigné (BE)	Valerie Hall (UK)			
1991-1995	COT	Hiroshi Machida (JP)	James Begét (US)	David Lowe (NZ)			
1987-1991	ICCT	John Westgate (CA)	Hiroshi Machida (JP)	Paul van den Bogaard (DE)			
1982-1987	CEV (IAVCEI)	Bruce Houghton (NZ) ⁵ Colin Wilson (NZ) Grant Heiken (US)		Wolf Elston (US) Stephen Self (US)			
1977-1982	COT	Stephen Sparks (UK) ⁵		Stephen Self (US)			
1973-1977	COT	Dragoslav Ninkovitch (US)	Yoshio Katsui (JP)	Colin Vucetich (NZ)			
1969-1973	COT	Kunio Kobayashi (JP)	(?) Sohei Kaizuka (JP)	John Westgate (CA)			
1965-1969	COT	Kunio Kobayashi (JP) ⁶					
1961-1965	COT	Kunio Kobayashi (JP) ⁶					

911 * For abbreviations see Table 2. Gaps indicate non appointment

912 ¹ Affiliated with INQUA except where noted (with IAVCEI)913 ² Interim committee to support the transition to IAVCEI914 ³ CA, Canada; NZ, New Zealand; JP, Japan; IS, Iceland; CH, Switzerland; BE, Belgium; DE, Germany; UK, United Kingdom; US, United States of America915 ⁴ David Lowe has been effectively an ‘emeritus advisor’ to the committee since 2019916 ⁵ IAVCEI commissions at this time comprised two officers. Sigurdur Thórarinsson held an honorary president role in COT from 1977–82 (Self and Sparks, 1981a; Elston and Heiken, 1984). Houghton and Wilson were joint leaders of CEV. Strictly, “COT” *per se* was defunct in this period 1982-87 but many members participated as tephrochronologists in CEV-related activities (e.g., volcanological congress in New Zealand, 1986), and so we include CEV for completeness.917 ⁶ Up until 1969, the COT executive evidently comprised only a president

924 There has been ongoing support for COT through elected officers since the 1990s as new generations
 925 have emerged, including from the growing numbers of cryptotephra specialists. However, it must be said that
 926 to join the commission as an officer does entail dedication and, at times, intense bursts of work – such as
 927 developing, promoting, organising, and running specialist field conferences or the tephra symposia at the
 928 INQUA congresses. Within IAVCEI, it is an expectation that normally a meeting is held by commissions
 929 within each inter-congress period, i.e., roughly every four years. As well as organising these meetings, officers
 930 of the commissions have hosted business meetings for commission members, acquired funding (see below),
 931 developed and hosted websites, and, as editors, typically led the publication of articles following conferences
 932 in proceedings comprising collective issues of journals or books as negotiated with publishers.

933 In 2015, the INTAV committee was expanded to five officers: a president, an immediate past-
934 president, and three vice-presidents (Table 4). Partly this move was recognition that in the age of the internet a
935 secretarial role had become less pivotal, but the main reasons were to:

- 936 • enhance the general functioning capability of the committee to reflect a rapidly growing membership;
- 937 • to help spread the increasing load relating to the acquisition of funding and associated compliance;
- 938 • to develop extra capacity to cope with workload in the busy 2015–19 inter-congress period of
939 simultaneously co-organising the tephra meeting in Romania (2018) and the multiple tephra sessions
940 planned for the Dublin INQUA congress (2019);
- 941 • to provide editing support to the local organising committee to publish the 2018 conference-related
942 special issue (Abbott et al., 2020b);
- 943 • to widen the geographic representation and to include more cryptotephra specialists;
- 944 • maintain experience while concomitantly encouraging ECR-members and improving gender balance.

945

946

947 4.2 Membership of COT

948

949 Until the early- to mid-2000s, membership of the commission under INQUA protocol was somewhat complex
950 with several categories including officers, formal members, honorary members, and corresponding members,
951 the last representing by far the bulk of the membership. Formal members, usually respected specialists (or
952 allied practitioners, such as palynologists or volcanologists who applied tephrochronology closely to their
953 research), were limited in number – for example, just six were listed for the 1965–69 period (Neustadt, 1969,
954 p. 90), nine were elected at the Christchurch INQUA Congress in 1973 (Kaizuka, 1974, p. 80), and 15 formal
955 members (with voting rights) are recorded, along with ~120 corresponding members, following the Berlin
956 INQUA Congress in 1995 (Lowe, 1996a). (Honorary members are discussed below in Sect. 5.2.) Together the
957 formal members and officers comprised the equivalent of a committee, but because most or all of the
958 commission's work was undertaken by the officers, then the latter effectively became the 'executive' or
959 'executive committee'.

960 From around 2002, membership was simplified and email lists of members were developed,
961 amalgamating formal and corresponding members into a single email group (see also Sect. 5.3). The process
962 began with the advent of the 'TEPHRA' group of JISCMAIL (a national academic mailing list service in the
963 UK) on 4 March, 2002, which was set up by Chris Turney (based in Queen's University, Belfast, at the time).
964 The purpose was to facilitate discussion around tephra issues as cryptotephra-based research began expanding
965 in the UK and beyond. Membership was then widened by Siwan Davies on 11 November, 2005, following a
966 tephra workshop in Swansea in April, 2005, to include SCOTAV members globally, the aim being "to provide
967 an important [international] forum for increased interaction and discussion amongst those involved with [all]
968 tephra studies." Thus, JISCMAIL (Tephra) became the default membership list for SCOTAV and INTAV after
969 2007 (Lowe, 2008). When issues or queries required membership input or voting, members were notified via

970 JISCMail. Today, under IAVCEI rules, members must formally sign up to COT within IAVCEI, and pay a
971 modest membership fee (which includes a reduced-fee option for ECRs).

972

973 4.3 Decline and rise of COT since the 1980s: key events and protagonists

974

975 *COT transforms to CEV*

976 After the 1980 Iceland meeting, the need for COT was questioned. Some considered that COT “had reached
977 its goals of communicating the utility of tephrochronology and tephra studies to the scientific community”
978 (chiefly with publication of Westgate and Gold, 1974, and Self and Sparks, 1981c) (Elston and Heiken, 1984).
979 Realization that research on explosive volcanism was rapidly expanding at this time led the secretary of COT
980 to propose (in December, 1982) that some members of the commission could serve as a nucleus for a
981 proposed Working Group on Explosive Volcanism within IAVCEI. A proposal for such a group was
982 submitted to the IAVCEI Secretariat at the International Union of Geodesy and Geophysics (IUGG) meeting
983 in Hamburg in August, 1983. The IAVCEI Executive Committee officially approved adoption of the Working
984 Group at the Hamburg meeting (Elston and Heiken, 1984; Schmincke, 1989, p. 234), and Grant Heiken was
985 appointed president and Stephen Self secretary. Self was replaced in 1984 by Wolfgang (‘Wolf’) Elston.
986 Sometime after, the Working Group was renamed the Commission on Explosive Volcanism (CEV). Bruce
987 Houghton and Colin Wilson (co-leaders) led the CEV from 1986 following their pre-eminent roles in the
988 highly successful IAVCEI International Volcanological Congress (centenary of 1886 Tarawera eruption) held
989 in New Zealand in February, 1986 (Schmincke, 1989). Retirements or passing of some of the early
990 protagonists of COT may have had an impact on this shift from INQUA to IAVCEI in the early 1980s. It
991 seems possible also that the long hiatus since the first COT meeting in 1964 could have been another catalyst
992 for change.

993

994 *Renaissance from 1987*

995 In 1987, however, at the INQUA Congress at Ottawa, some persons expressed the view that the needs of
996 tephrochronologists were not being met under CEV of IAVCEI. It was decided to make a request to the
997 INQUA Executive Committee for reinstatement of COT. John Westgate convened a meeting at the conclusion
998 of a tephra symposium in Ottawa and prepared a document justifying this aim. He presented it to the INQUA
999 Executive Committee the next day. The executive decided to reinstate this group but under the title ‘Inter-
1000 Congress Committee on Tephrochronology’ (ICCT). There would be a trial period of inter-congress length
1001 and a decision to elevate to a full commission would be made at the next INQUA Congress. Looking back, it
1002 might seem this ‘trial’ was a bit harsh, but a more objective view is that COT’s first quarter of a century might
1003 be characterized as somewhat below par with only two field meetings (1964, 1980), albeit tempered with a
1004 strong presence by COT at the INQUA Congress in Christchurch (1973) and publication of both Westgate and
1005 Gold (1974) and Self and Sparks (1981c). In any event, the formation of ICCT in 1987 can be seen as a
1006 turning point for COT: the election of a full complement of officers in 1987 under Westgate’s leadership, the

1007 successful tephra meeting in Mammoth in 1990, and the subsequent volume of ensuing papers (including the
1008 new tephra characterization protocols of Froggatt, 1992) edited by Westgate et al. (1992b), collectively
1009 demonstrated a renewed and strong commitment by ICCT and enabled COT to be restored as a formal
1010 commission of INQUA in Beijing in 1991 (Lowe, 1996a).

1011

1012 *Growth from 1990s: emergence of modern cryptotephra studies and new techniques*

1013 The momentum was maintained with the PAGES-COT ‘Climatic impact of volcanism’ meeting held in Japan
1014 in December, 1993, the triple-discipline meeting held only a few months later in New Zealand in February,
1015 1994, and the meeting held in France in July-August, 1998 (Table 3). Membership by this time was strong,
1016 exceeding 100 (Lowe, 1996a). At the same time, cryptotephra studies of the modern era, as noted earlier, were
1017 advancing at pace (e.g., Pilcher and Hall, 1992, 1996; Merkt et al., 1993; van den Bogaard et al., 1994; Pilcher
1018 et al., 1995; Dugmore et al., 1996) and so a new cohort of graduate students, working on cryptotephra, was
1019 training in parallel to the more traditional graduates developing skills and expertise relating to visible tephra
1020 and associated proximal deposits in volcanically active countries (Froese et al., 2008a). It is also noteworthy
1021 that, following on from Froggatt’s (1992) recommendations, John Hunt and Peter Hill undertook in the 1990s
1022 the first interlaboratory comparison exercise involving EPMA, targeting data quality, testing glass standards
1023 (including Lipari obsidian), and evaluating reproducibility (Hunt and Hill, 1993, 1996, 2001; Hunt et al.,
1024 1998).

1025 The 2010 Active Tephra meeting in Kirishima, Japan, may be viewed as another turning point for
1026 COT, described as a ‘step-change’ by Lowe et al. (2011a), because by then, or soon after, many cryptotephra
1027 specialists were graduating, some taking up research and/or lecturing positions, and therefore helping to
1028 develop new directions for research including in the marine environment and in ice cores. Thus an
1029 increasingly global outlook for tephrochronology (*sensu lato*) began to accelerate from around that time
1030 (Riede and Thastrup, 2013; Smith et al., 2013; Davies et al., 2014; Davies, 2015; Ponomareva et al., 2015;
1031 Lane et al., 2017a).

1032 We mentioned earlier that new dating techniques were reported at the 1990 Mammoth meeting, and
1033 also Bayesian age modelling was featured at the 2010 Kirishima meeting (built around ever-improving ^{14}C -
1034 calibration curves and other age-related data, most recently including zircon double dating). These techniques,
1035 alongside improving and new analytical techniques for glass shards, especially involving EPMA and LA-ICP-
1036 MS that were developing through the 1990s and the 2000s, provided further drive to enable tephra and
1037 cryptotephra studies to flourish (e.g., Bitschene and Schmincke, 1990; Westgate et al., 1994; Hunt et al., 1998;
1038 Pearce et al., 1999, 2007, 2011, 2014; Platz et al., 2007; Kuehn et al., 2011; Hayward, 2012; Pearce, 2014;
1039 Tomlinson et al., 2015; Danišík et al., 2017, 2020). In particular, the need to date glass shards in distal or
1040 ultra-distal settings, where inappropriate or no mineral grains were present, helped lead to the development of
1041 the ITPFT method (Westgate, 1989). Moreover, the requirement to be able to analyse very small glass shards
1042 accurately (such as fine-grained glass in ultra-distal deposits in ice cores, lacustrine, or marine sediments) led

1043 to the development of improved probe and LA-ICP-MS methods in cryptotephra studies (Hayward, 2012;
1044 Alloway et al., 2013; Lowe et al., 2017a).

1045 Thus by the time the most recent commission-related meetings were held in 2015 (Nagoya, Japan),
1046 2017 (Portland, USA), 2018 (Moieciu de Sus, Romania), and 2019 (Dublin, Ireland), the contributions of
1047 participants in the discipline were wide ranging and detailed, i.e., the new research had both breadth and
1048 depth. An informal survey undertaken of commission members in 2017 (as part of an EXTRAS funding
1049 application to INQUA) showed that ECRs and PhD students made up a healthy 39% of respondents, balanced
1050 by 53% of established or senior scientists (along with 8% of researchers associated with developing
1051 countries). Creditably, female tephrochronologists amounted to 39% of respondents at that time (cf. male
1052 61%). We speculate that this gender imbalance may have tilted further towards an even more equitable status
1053 since the survey in 2017.

1054
1055 4.4 Funding acquired by INTAV since 2007 and its expenditure
1056

1057 The commission officers have always had to bid for funding, primarily from INQUA and also from PAGES.
1058 Funding and in-kind support have also been acquired from numerous geo-institutes, scientific societies,
1059 universities, city councils, and private companies relating to the hosting of events in various cities and
1060 countries. These funds have been used to support specialist meetings and/or for publishing special COT-
1061 endorsed volumes, such as Westgate and Gold (1974), or conference proceedings such as Juvigné and Raynal
1062 (2001b). Since 2007 (earlier records of funding are not available), support from INQUA, especially through
1063 successive presidents of SACCOM until 2018, has been greatly appreciated. In particular, financial support,
1064 amounting to around €35,000 in total from 2009–2018, mainly helped ECRs attend the international field
1065 conferences and specialist (tephra skills) workshops as follows:

- 1066 • full tephra field meeting in Kirishima, Japan, in May, 2010 (supported also by PAGES: Lowe,
1067 2011b);
- 1068 • Bayesian age-modelling workshop in San Miguel de Allende, Mexico, led by Maarten Blaauw in
1069 August, 2010 (supported also by PAGES: Blaauw et al., 2011);
- 1070 • INTAV/TIQS Tephra in Quaternary Science workshop on the Eyjafjallajökull eruption of Iceland in
1071 Edinburgh, UK, led by Andrew Dugmore in May, 2011 (Dugmore et al., 2011);
- 1072 • two tephra workshops in Portland, USA, in August, 2014, and August, 2017 (Kuehn et al., 2014;
1073 Bursik et al., 2017) (<https://vhub.org/search/?terms=tephra+workshops>) (see Sect. 6.1 below);
- 1074 • full tephra field meeting in Moieciu de Sus, Romania, in June-July, 2018 (Karátson et al., 2018).

1075
1076
1077
1078

1079 **5 Aims of COT, life membership awards, and communication**

1080

1081 In this section, we firstly outline and compare the aims of COT and how they have changed (or not) since the
1082 commission's founding. We then describe the circumstances around the development of the commission's
1083 honorary life membership awards. Finally, we outline how the commission has kept in touch with members.

1084

1085 5.1 Aims of COT past and present

1086

1087 Prior to the 1961 Warsaw INQUA Congress, Kunio Kobayashi's pre-congress proposal for a COT included
1088 several broad aims, namely to develop tephrochronology and apply it to Quaternary research, and to meet to
1089 report and discuss findings from different countries (as noted in Sect. 2.1). After the Warsaw conference, he
1090 expanded on these aims. Key aspects were to advance the principles of tephrochronology as well as
1091 methodology, to develop a global inventory (with regional maps) of the distribution of tephras including in
1092 ocean sediments, and to determine the numerical ages of tephras (Neustadt, 1969, p. 90). It is of interest that
1093 Kobayashi (1965, p. 786), after discussions in person with Prof. Josef Frechen, a tephrochronologist in
1094 Germany, compiled a list with several more potential objectives, some presciently, including:

1095 • study of widely distributed tephra deposits, such as thin ash layers in the Greenland ice sheet and in
1096 marine sediments, derived from very explosive, large-volume eruptions;

1097 • developing microscopic methods to try to recognise the existence of tephra materials "even if they are
1098 in least [sparse] amounts";

1099 • developing diagnostic petrographic and palaeomagnetic features on lavas to provide a basis for
1100 correlating related (co-magmatic) tephras;

1101 • undertaking weathering studies on glass and associated clay minerals and hence evaluating potential
1102 environments during and since deposition;

1103 • holding regular workshops/conferences to discuss ideas and compare findings.

1104

1105 Although the aim of COT can now be expanded to include a re-awakened focus on volcanic studies, the
1106 means to achieve this aim broadly remain the same. However, the application of tephrostratigraphy to inform
1107 volcanological studies, recently emphasised by Cashman and Rust (2020), has remained an important focus in
1108 recently active volcanic countries such as New Zealand (e.g., Lowe, 1988; Newnham et al., 1999; Lowe et al.,
1109 2002; Smith et al., 2005; Hopkins et al., 2021a), Iceland (e.g., Thórarinsson, 1979; Pilcher et al., 1995;
1110 Thordarson and Höskuldsson, 2008; Óladóttir et al., 2012), Indonesia (Pearce et al., 2020), Chile (Romero et
1111 al., 2021), USA (Crandell and Mullineaux, 1978; Heiken and Wohletz, 1987; Begét et al., 1994; Waitt and
1112 Begét, 2009; Cassidy et al., 2014), Japan (Machida, 1991, 1999, 2002; Tatsumi and Suzuki-Kamata, 2014;
1113 Schindlbeck et al., 2018), and Italy (e.g., Wulf et al., 2018; Leicher et al., 2021).

In general terms, the aim is to improve or develop new methods and protocols of tephrochronology (spanning field, analytical, geochronological, remote sensing, and digital/internet realms) to support and facilitate wide-ranging Quaternary research initiatives ranging from paleoenvironmental reconstruction to geomorphology, archaeology, and paleoanthropology, as well as wide geochronological and volcanological applications. In addition, enhancing the global capability of tephrochronology for future research by training and mentoring emerging researchers remains paramount within the aims of the modern-day COT (Lowe et al., 2018). Centred around the concept of process-response systems, Paredes-Marino et al. (2022) provided a number of additional future challenges involving tephra studies, including characterization of freshly-fallen deposits to aid construction of enhanced ash-dispersion and ash-depositional models and hence improve volcanic hazard analysis and its communication. Engagement with citizen scientists was also emphasised because it potentially helps build community understanding and resilience through education.

The seven objectives of the (completed) EXTRAS project provide a useful summary of the current major aims of COT in greater detail. We have expanded them to some extent as new ideas and research directions have arisen, and added a new objective – number 5 listed below – along with some relevant supporting references for it. The aims are to:

1. evaluate and apply new and emerging technologies to identify and map proximal-to-distal, and ultra-distal, tephra and cryptotephra deposits, and to establish their spatial and stratigraphic interrelationships to facilitate their use as chronostratigraphic units (including within loess, ice, speleothems, and other sedimentary deposits, and in soils and paleosols) and as a basis for documenting and enhancing volcanic eruption histories (including through stratigraphic interfingering of tephra deposits from different volcanoes);
2. develop and evaluate new and emerging methods to characterize tephra and cryptotephra constituents mineralogically and geochemically (including isotopically) using formalised protocols that enhance data quality, quantity, and accessibility;
3. develop improved age models for tephra and cryptotephra deposits, including via Bayesian age modelling and wiggle-matching, and hence improve existing age models for key volcanic, palaeoclimatic, archaeological, sedimentary and other sequences using tephra and cryptotephra as appropriate;
4. evaluate and develop objective ways of correlating tephra and cryptotephra deposits from place to place including using statistical techniques and numerical measures of probability of correlation or not;
5. recognise and map ‘transformed’ tephra deposits (i.e., that have undergone morphological changes such as reworking, dislocation, or bioturbation) and hence evaluate new ways of reconstructing past environments using information provided by such transformations (e.g., Dugmore and Newton, 2012; Cutler et al., 2016, 2020; Blong et al., 2017; Dugmore et al., 2020; Thompson et al., 2021);
6. develop regional and ultimately global databases of high-quality mineral, geochemical, and other data (stratigraphic, chronologic, spatial, bibliometric) pertaining to tephra and cryptotephra deposits, and which are universally accessible (see Sect. 6.1 below);

1151 7. maintain and enhance the global capability of tephrochronology for future research by supporting emerging
1152 researchers (ECRs) in the discipline through mentoring and training and in various other ways;
1153 8. improve education to the wider community (outreach) about tephrochronology, its history, and its
1154 application and relevance to society, including through engagement with citizen scientists.

1155

1156 5.2 Life membership awards

1157

1158 During the ICCT period (1987–1991), one of the initiatives was to recognize more clearly those individuals
1159 who had made exceptional contributions to the discipline of tephrochronology. Ray Wilcox was the first
1160 member so elected at this time, along with Colin Vucetich soon after, both being recorded as ‘honorary
1161 members’ in 1991 (Lowe, 1996a). A simplification of membership categories in the early 2000s (Sect. 4.2)
1162 then led to the development of the ‘honorary life member’ award (replacing ‘honorary member’). With Ray
1163 Wilcox and Colin Vucetich already acknowledged as (re-named) ‘honorary life members’, another 13
1164 recipients have been awarded life membership since 2007, all under INTAV (Table 5). The 15 honorary life
1165 members in total represent institutions in eight countries.

1166

1167 **Table 5.** Honorary life members of the commission, their country of origin,
1168 and the year of award

1169

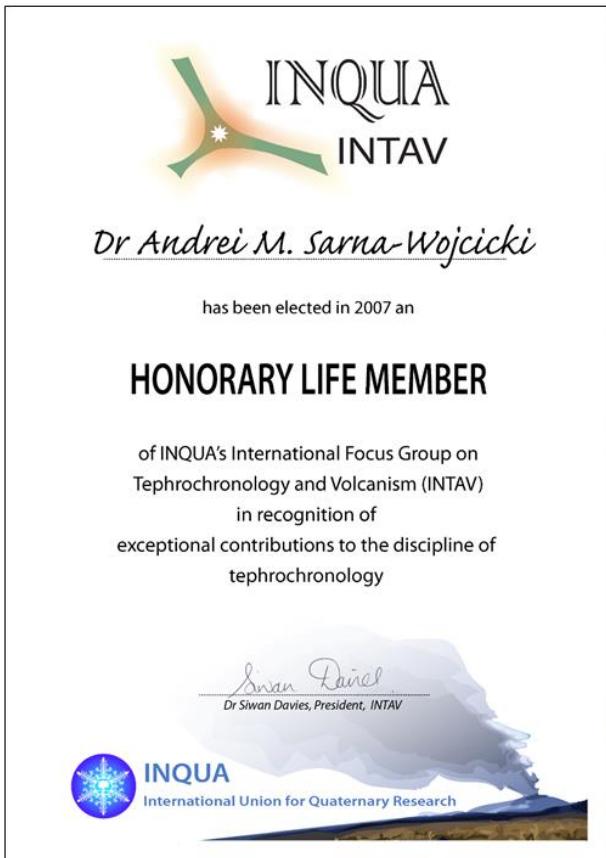
1170

1171	Siwan Davies (UK) – 2019
1172	Guðrún Larsen (Iceland) – 2018
1173	David Lowe (New Zealand) – 2018
1174	James Begét (USA) – 2015
1175	Hiroshi Moriwaki (Japan) – 2015
1176	Andrew Dugmore (UK) – 2014
1177	Vera Ponomareva (Russia) – 2014
1178	Valerie Hall (UK) (1946-2016) – 2011
1179	John Hunt (UK) – 2011
1180	Étienne Juvigné (Belgium) – 2007
1181	Hiroshi Machida (Japan) – 2007
1182	Andrei Sarna-Wojcicki (USA) – 2007
1183	John Westgate (Canada) – 2007
1184	Colin Vucetich (New Zealand) (1918-2007) – 1991
1185	Ray Wilcox (USA) (1912-2012) – 1991

1186

1187

1188


1189 For the record, the life membership certificate (Fig. 10), designed by Betty-Ann Kamp, shows a
1190 schematic eruption plume representation based on the eruption of Mt Ruapehu stratovolcano (New Zealand)
1191 around 1230 h on 18 June, 1996 (photo in Lowe, 2011a, p. 108).

1192

1193

1194

1195

1196

1197 **Figure 10 (Left).** Example of a life member certificate of INTAV. **(Right)** *(Upper)* Special cake and unique
 1198 certificate prepared for the ‘Tephra Hunt’ conference dinner (27 June, 2018) to commemorate the 50th
 1199 anniversary of the publication of John Westgate’s pioneering paper on EPMA analysis of glass shards (Smith
 1200 and Westgate, 1969). From left, Takehiko Suzuki, Cora and John Westgate, Britta Jensen, Peter Abbott, and
 1201 David Lowe. Photo: anonymous. *(Lower)* Close-up view of the commemorative certificate presented to John
 1202 Westgate. The scanning electron microscope images of glass shards (provided by Britta Jensen) represent the
 1203 North American tephras that Westgate analysed in undertaking this seminal research (see Froese et al.,
 1204 2008b). Photo: David Lowe.

1205

1206 5.3 Communicating within COT and beyond

1207

1208 Communication amongst members was originally by irregular newsletter, the most recent paper copies being
 1209 those physically posted between 1991 and 1994 (Machida and, Lowe 1991; Lowe, 1992, 1994a). As described
 1210 earlier in Sect. 4.2 on membership, the ‘TEPHRA’ group of JISCMail ([https://www.jiscmail.ac.uk/cgi-
 1211 bin/webadmin?A0=TEPHRA](https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=TEPHRA)) was initiated ~20 years ago by Chris Turney in 2002 and then broadened to
 1212 global coverage by Siwan Davies in 2005 “for increased interaction and discussion amongst those involved
 1213 with tephra studies.” That development, significantly, sparked a furious discussion about the term
 1214 ‘microtephra’ versus ‘cryptotephra’, kicked off by comments from John Lowe on 13 November, 2005. This
 1215 email system is still being used today by members of COT (e.g., for advertising PhD scholarships,
 1216 forthcoming meetings or online workshops, etc.). The archives have in fact been extraordinarily helpful in
 1217 allowing us to provide some dates for events, names of people, etc., otherwise almost certainly lost forever.

1218 JISCMail TEPHRA works alongside a Facebook page (<https://www.facebook.com/IAVCEICOT/>)

1219 that was set up by Peter Abbott on 19 August, 2015 (following discussion at the Nagoya INQUA Congress
1220 earlier that month), and a Twitter feed (https://twitter.com/IAVCEI_COT). A tephrochronology website has
1221 been in place since about 2002 (under SCOTAV), originally being established by Chris Turney (whilst at
1222 Queen's University, Belfast, UK) and then hosted by Brent Alloway (GNS Science, New Zealand). It was
1223 subsequently hosted by Phil Shane (University of Auckland) from September 2008 to November 2011 (under
1224 INTAV), then by Victoria Smith (University of Oxford) until March 2017, and by Takehiko Suzuki (Tokyo
1225 Metropolitan University) from March 2017 until 2021. A new COT website, to be hosted by IAVCEI
1226 (cot.iavceivolcano.org), is being developed and is to be launched in the near future.

1227
1228
1229 **6 Legacies and future of COT**

1230
1231
1232 Key legacies from the pre-2019 commission that will be continued by the current COT include the
1233 organisation of regular stand-alone international tephra conferences – approximately every four years – that
1234 combine conference and field elements, together with workshops or online meetings or webinars on specific
1235 topics and/or the development of certain skills. In addition, COT will continue convening sessions/symposia at
1236 large-scale meetings, such as the IAVCEI scientific assemblies (e.g., tephra skills workshop held in Portland
1237 in 2017) and INQUA congresses (e.g., two sessions on tephra studies were held in Dublin in 2019, together
1238 generating the largest number of papers of any group at that congress: Fig. 11), supporting smaller (niche)
1239 meetings, workshops, and webinars, and reporting the results of tephrochronological studies in special issues
1240 of journals or books or specialist interactive websites. In total, two books and ten tephra volumes
1241 encompassing six different journals (Footnote, Table 3), special workshop and other reports, abstract volumes,
1242 and field-trip guidebooks (etc.), have been published by commission officers and others as a written legacy
1243 that has arisen mainly from international or national tephra conferences.

1244 Commission-supported or endorsed methodological research projects, such as those conducted by
1245 Froggatt (1992), Hunt and Hill (1996), Suzuki (1996), Hunt et al. (1998), Turney et al. (2004b), Kuehn et al.
1246 (2011), Pearce et al. (2014), and Suzuki et al. (2014), remain a high priority and COT will continue to provide
1247 support or endorsement for tephra-focused projects that require input from the geoscience community. Three
1248 projects currently being undertaken with the endorsement of COT are described in the following sections.

1249
1250

1251
1252 **Figure 11. (Upper)** (Left) Large audiences, reflecting the new vibrancy of INTAV/COT as an important
1253 global discipline, were a feature of the two tephra sessions at the Dublin INQUA Congress in July, 2019.
1254 Photo: David Lowe. (Right) Takehiko Suzuki (INTAV president) presenting Siwan Davies with honorary life
1255 membership. **(Lower)** (Left) INTAV's last executive committee (2015–2019), photographed on 30 July, 2019,
1256 during the INTAV business meeting at the Dublin congress. From left, Peter Abbott, Siwan Davies (seconded
1257 to committee in August 2017), Britta Jensen, Victoria Smith (who resigned in February 2017 after ~5 years of
1258 service), Takehiko Suzuki, and David Lowe. Photo: anonymous. (Right) Tephrochronologists and
1259 volcanologists enjoying the special tephra dinner in Dublin, 2019. Photo: David Lowe.
1260
1261

1262 6.1 Development of best practices protocols and databases

1263 This project, examining all aspects of tephra studies, began in 2014 (Kuehn et al., 2014). Initially led by Steve
1264 Kuehn, Marcus Bursik, Solène Pouget, Kristi Wallace, and Andrei Kurbatov, many others have now been
1265 involved in the project as well. Best practices recommendation spreadsheets were updated in 2021 to version 3
1266 (Abbott et al., 2021), and a manuscript which describes them has been revised and re-submitted for
1267 publication (Wallace et al., in review). Since mid-2020, there is support for tephra in the StraboSpot field app
1268 (<https://strabospot.org>) and a tephra-specific help file (<https://strabospot.org/files/StraboSpotTephraHelp.pdf>).
1269 Staff of the Alaska Volcano Observatory of US Geological Survey have used the protocols now for two field
1270 seasons. A new tephra community portal was developed in 2021 in collaboration with the EarthChem data
1271 repository (<https://earthchem.org/communities/tephra/>), and this has templates for submitting information on
1272 samples, analytical method, and geochemical data. Recently updated examples of a 'best practice dataset',
1273

1275 based on (i) Summer Lake and (ii) June Lake tephras and their analyses, are available at Kuehn and Hostetler
1276 (2020) and Kuehn and Lyon (2020), respectively (see also Kuehn et al., 2021; Wallace et al., 2021). Steve
1277 Kuehn has 22 electron microprobe analysis method descriptors published with DOIs at EarthChem as the first
1278 of their kind using the new method-reporting format (Kuehn, 2021a, b).

1279 Within the project, the further development of regional, thence global, databases is a priority because
1280 incomplete data are tending to limit correlation efficacy, especially as ‘exotic’ cryptotephras are now being
1281 increasingly discovered many thousands of kilometres away from source as ultra-distal deposits (e.g., Lane et
1282 al., 2017a; Lowe et al., 2017a; van der Bilt et al., 2017; Abbott et al., 2020a; Jensen et al., 2021; Krüger and
1283 van den Bogaard, 2021). The growing need for developing modern tephra databases was emphasised in
1284 discussions on JISCMail in 2006 that included contemporary comments from Chris Turney and Simon
1285 Blockley. However, it is notable that ‘Tephrabase’, first made available in June, 1995, represents one of the
1286 earliest scientific databases to be made available on the internet (Newton et al., 1997, 2007) (see
1287 <https://www.tephrabase.org/>). Some further examples of databases of various types include those of Machida
1288 and Okumura (1996), Larsen and Eiríksson (2008), Preece et al. (2011), Riede et al. (2011), Crosweller et al.
1289 (2012), Bronk Ramsey et al. (2015b), Gudmundsdóttir et al. (2016), Cameron et al. (2019), Meara et al. (2020),
1290 Nakanishi et al. (2020), Portnyagin et al. (2020), Hopkins et al. (2021b), and Van Hazinga et al. (2021).
1291 Progress in connecting such databases to larger, more comprehensive setups is exemplified in New Zealand by
1292 the availability of analytical and other data in Hopkins et al. (2021b): data are provided as Excel files in open
1293 access supplementary materials, in GNS Science’s national database, Pet Lab (<https://pet.gns.cri.nz>), and also
1294 as a file submission on EarthChem (Hopkins et al., 2020).

1295 The best practices group has taken things even further towards a global or ‘next generation’ system
1296 using both SESAR (www.geosamples.org) to generate unique, persistent global digital indices (IGSNs) for
1297 tephra samples, and EarthChem (<https://earthchem.org/>) on the tephra portal (noted above). SESAR provides
1298 access to IGSNs for samples, specimens, and related sampling features from the natural environment
1299 (<https://www.igsn.org/>). Registration with IGSN allows samples to be unambiguously cited and linked to data
1300 and publications, and tracked through labs and repositories, making samples ‘findable, accessible,
1301 interoperable, and reusable’ (FAIR). SESAR develops and operates digital tools and infrastructure for
1302 researchers, institutions, and sample facilities to store and openly share information about their samples.
1303 IGSNs can register field sites and cores as well as samples. In the longer term, the vision is for everything to
1304 be connected. Hence, someone in the near future could undertake a geochemical search and, from there, find
1305 all related data and information from the labs for potentially correlative samples, all of the related
1306 publications, the researchers who did the work, and any other aspects including the original field sites (Steve
1307 Kuehn personal communication, 2021). Most recently, a best practices ‘Tephra fusion webinar’ was held over
1308 four sessions in February and March 2022 (<https://tephrochronology.org/cot/Tephra2022/#>).

1312 6.2 Microbeam trace-element characterization of new tephra glass reference material
1313
1314 Led by Nick Pearce, John Westgate, and Brent Alloway, this project builds on relatively recent progress in the
1315 development of analytical protocols for analysing tephra- or cryptotephra-derived glass shards (especially
1316 fine-grained shards), as undertaken (for example) by Morgan and London (2005), Kuehn and Froese (2010),
1317 Kuehn et al. (2011), Hayward (2012), Hall and Hayward (2014), Pearce et al. (2014), Iverson et al. (2017),
1318 and Lowe et al. (2017a). The project involves analyzing trace elements and isotopes in glass shards from four
1319 carefully selected tephra-derived glass samples (A–D) using a range of analytical techniques including LA-
1320 ICP-MS, ion probe, isotopic analyses, mini-bulk methods, etc. More than 30 analytical labs are involved in the
1321 project. Samples A, B, and D are rhyolitic and sample D is phonolitic in composition. Pearce, Westgate, and
1322 Alloway checked the homogeneity of the trace-element compositions by LA-ICP-MS and ion probe analyses
1323 on multiple individual shards in each of the samples. They found that samples B, C, and D are homogeneous
1324 at the precision of the methods employed. However, sample A shows two populations (approximately 2/3 and
1325 1/3 of the shards) based on trace-element analyses, each population having a quite tight compositional range
1326 and most easily separable by Ba content (Nick Pearce personal communication, 2019, via the project's
1327 "Second Circular"). Having the two compositional populations does not obviate its use as a reference glass.
1328 Rather, it emphasises the requirement to undertake analyses of a sufficient number of shards to accurately
1329 represent all the different populations potentially in a glass-shard sample.

1330 Splits of the precious glass separates A–D were dispatched to participating laboratories in December,
1331 2018, along with details about sample preparation and major element compositions. Templates for reporting
1332 analyses were provided in mid-April, 2019. Further development of the project has been curtailed somewhat
1333 because of COVID-19, but we anticipate that a full analysis of the findings will be developed, together with
1334 recommended analytical protocols, and presented in due course.

1335
1336 6.3 VOLCORE
1337

1338 Another recent development from the volcanological community is the comprehensive VOLCORE (Volcanic
1339 Core Records) database (Mahony et al., 2020). Although not strictly a COT initiative, it is nonetheless a very
1340 important advance for tephrochronologists and volcanologists alike, hence we document it here. VOLCORE
1341 comprises a collection of 34,696 visible tephra (volcanic ash and lithological or grain size variations)
1342 occurrences reported in the initial reports volumes of all of the Deep Sea Drilling Project (DSDP; 1966–1983),
1343 the Ocean Drilling Program (ODP; 1983–2003), the Integrated Ocean Drilling Program (IODP; 2003–2013),
1344 and the International Ocean Discovery Program (IODP; 2013–present) up to and including IODP Expedition
1345 381. Data include the depth below sea floor, tephra thickness, location, and any reported comments. The
1346 authors report that an approximate age was estimated for most (29,493) of the tephra layers using published
1347 age-depth models, and that VOLCORE can be used as a starting point for studies of tephrochronology,

1348 volcanology, geochemistry, sediment transport, and palaeoclimatology (Mahony et al., 2020). No equivalent
1349 database is yet available for records of tephra and/or volcanic signals in ice cores.

1350

1351

1352 **7 Summary and conclusions**

1353

1354

1355 Although modern tephra studies effectively began globally in the 1920s, albeit in a limited way (Thórarinsson,
1356 1981), and the terms ‘tephra’ and ‘tephrochronology’ were resurrected and coined, respectively, by
1357 Thórarinsson in 1944, the advent of an omnifarious group catering for tephrochronologists globally did not
1358 exist until 7 September, 1961. On that day, the Commission on Tephrochronology was born within INQUA,
1359 thanks largely to the very substantial efforts of Kunio Kobayashi, along with those of Sohei Kaizuka and
1360 Masao Minato, backed by the National Committee of Quaternary Research of Japan, and various supporters
1361 including Thórarinsson and others. In this article we have traced COT’s development, including both waxing
1362 and waning phases, and its zig-zagging trajectory from one host organization (INQUA) to the other (IAVCEI),
1363 over the past 60 years. We have evaluated the commission’s role in stimulating and supporting global tephra
1364 studies, our main aim being to inspire new generations of tephrochronologists by preserving, documenting,
1365 and commenting on important historical events and leadership relating to the discipline. We additionally felt a
1366 substantial obligation to inform succeeding generations because many of the commission members, especially
1367 ECRs, have shown a strong commitment for COT’s continuation as a vigorous stand-alone international
1368 research group. Consequently, paraphrasing the concluding words of MacCracken and Volkert (2019, p. 135),
1369 we hope that our review has made a substantial contribution “to a common memory and tradition into the
1370 future about [the] personalities and groupings” that have responded scientifically to the numerous challenges
1371 involving tephrochronology and its application during the past 60 years (and earlier).

1372 A critical turning point in COT’s flagging fortunes is identified as taking place in 1987, after which
1373 the commission began to flourish, especially in the 1990s and subsequently. The ‘Active Tephra’ meeting in
1374 southern Japan in 2010 was another key point in COT’s development, as new dating methods and analytical
1375 techniques were being developed, or had been achieved, and many of the ECRs (including students) from
1376 around that time started to become – or had become – leaders in the discipline. Now with strong numbers of
1377 members globally and expertise encompassing a much wider range of countries than previously, and a high
1378 proportion of ECRs working alongside a mix of experienced mid-career and senior practitioners, the
1379 commission might be seen as attaining close to its full potential as a global discipline in the past decade, most
1380 notably expressed in the three meetings held from 2017 to 2019. Good (2000, p. 260) defined ‘disciplines’
1381 philosophically as ‘ever-changing frameworks within which scientific activity is organised’, the ‘degree of
1382 consensus’ with respect to conceptual, methodological, institutional, and social questions being the key to a
1383 discipline achieving ‘an identity’. Such an identity we would argue has been attained for tephrochronology:
1384 support for tephrochronology and its application has never been stronger. For example, around 235

1385 participants took part in the first workshop of the ‘Best practices: tephra fusion webinar’ held on 10 February,
1386 2022, and the COT Facebook site at the same time had recorded around 300 ‘likes’. Renewed linkages with
1387 the volcanological community – unequivocal now that IAVCEI is the commission’s sponsor – alongside the
1388 Quaternary paleoenvironmental, archaeological, geochronological, and other communities, are also
1389 expanding.

1390 We have documented and illustrated the nine inter-INQUA specialist tephra field meetings, each
1391 averaging nearly 60 participants, which have taken place in seven different countries, along with other
1392 activities including the key involvement of tephrochronologists in international projects such as INTIMATE,
1393 RESET, or SMART, the organisation of tephra sessions or symposia at full congresses of INQUA, or in
1394 conjunction with its various commissions (e.g., Loess, Palaeoclimate, or Paleopedology commissions), and
1395 specialist workshops facilitated and/or run by COT in person or online. We have also explained some of the
1396 tephrochronological advances that occurred alongside or in conjunction with COT’s development, and listed
1397 the commission’s outputs of highly-cited tephra-focussed journal volumes or books (12 in all) or specialist
1398 websites. The commission has been led by 29 officers in total, representing nine countries, and many have
1399 served eight years or more on COT. Fifteen recipients representing eight countries have been awarded
1400 honorary life membership of the commission.

1401 It is somewhat ironical that at recent meetings a majority (or close to it) of participants has comprised
1402 those studying cryptotephras in countries without active, or even recently active, volcanism. Nevertheless,
1403 the continuing rise and impact of research by members of COT, both in volcanic and non-volcanic countries,
1404 including increasing proportions of ECRs and female tephrochronologists, ensure an exciting, enlightened,
1405 and, perhaps equally importantly, collegial and warm-hearted future for all tephrochronologists in continuing
1406 to advance the ever-changing frameworks forming the discipline.

1407
1408 **Author contributions.** DJL and PMA wrote the initial draft with support from TS and BJLJ who contributed
1409 valuable information and editing. All authors contributed to the final paper.

1410
1411 **Competing interests.** The authors declare that there is no conflict of interest.

1412
1413 **Acknowledgments.** We are very grateful to John Westgate, Vince Neall, Steve Kuehn, Hiroshi Machida, Jim
1414 Cole, Colin Wilson, Marcus Bursik, Paul van den Bogaard, John Hunt, Steve Self, Sir Stephen (Steve) Sparks,
1415 Nick Pearce, Hans-Ulrich Schmincke, Jean-Paul Raynal, Bruce Houghton, Mizuo Machida, Étienne Juvigné,
1416 Stefan Wastegård, Christel van den Bogaard, Matt McGlone, Bob Walter, Paul Froggatt, Siwan Davies, Norm
1417 Catto, Cora Van Hazinga, Andrei Kurbatov, and (the late) Malcolm Buck, together with librarian, Maria
1418 McGuire, and linguist Ray Harlow (University of Waikato), for comments and for their help in this
1419 compilation. We especially thank reviewer Ray Cas, and a second (anonymous) reviewer, whose useful
1420 comments and suggestions helped us to markedly improve the article. We appreciated very much the helpful
1421 editorial suggestions of topical editor, Hans Volkert, and the assistance of HGSS editorial-support staff. Betty-

1422 Ann Kamp is also thanked for her cartographic work for INTAV. We acknowledge and thank many others
1423 who have helped with COT and its development and activities and associated scientific advances over the past
1424 60 years, and for the wonderful attendant companionship enjoyed by participants in the commission's
1425 activities. Lowe acknowledges support from MBIE Endeavour Fund Smart Ideas (grant UOWX1903) and
1426 Marsden Fund Te Pūta Rangahau a Marsden (grant UOW1902) in preparing this article. The paper is an
1427 output of the Commission on Tephrochronology of the International Association of Volcanism and Chemistry
1428 of the Earth's Interior (IAVCEI).

1429

1430 **References**

1431

1432 Abbott, P.M. and Davies, S.M.: Volcanism and the Greenland ice-cores: the tephra record. *Earth-Science*
1433 *Reviews* 115, 173–191, 2012.

1434 Abbott, P.M., Griggs, A.J., Bourne, A.J., and Davies, S.M.: Tracing marine cryptotephras in the North Atlantic
1435 during the last glacial period: protocols for identification, characterisation and evaluating depositional
1436 controls. *Marine Geology* 401, 81–97, 2018a.

1437 Abbott, P.M., Griggs, A.J., Bourne, A., Chapman, M.R., and Davies, S.: Tracing marine cryptotephras in the
1438 North Atlantic during the last glacial period: improving the North Atlantic marine tephra framework.
1439 *Quaternary Science Reviews* 189, 169–186, 2018b

1440 Abbott, P.M., Jensen, B.J.L., Lowe, D.J., Suzuki, T., and Veres, D.: Crossing new frontiers: extending
1441 tephrochronology as a global geoscientific research tool. *Journal of Quaternary Science* 35 (1-2), 1–8,
1442 2020a.

1443 Abbott, P.M., Jensen, B.J.L., Lowe, D.J., Suzuki, T., and Veres, D. (editors): *Tephrochronology as a global*
1444 *geoscientific research tool*. *Journal of Quaternary Science* 35 (1/2), 1–379, 2020b.

1445 Abbott, P., Bonadonna, C., Bursik, M., Cashman, K., Davies, S., Jensen, B., Kuehn, S., Kurbatov, A., Lane,
1446 C., Plunkett, G., Smith, V., Thomlinson, E., Thordarsson, T., Walker, J.D., and Wallace, K.: Best practice
1447 templates for tephra collection, analysis, and correlation (Version 3.0.0) [Data set].
1448 Zenodo, <http://doi.org/10.5281/zenodo.3866266>, 2021.

1449 Albert, P.G., Smith, V.C., Suzuki, T., McLean, D., Tomlinson, E.L., Miyabuchi, Y., Kitaba, I., Mark, D.F.,
1450 Moriwaki, H., SG06 Project Members, and Nakagawa, T.: Geochemical characterisation of the Late
1451 Quaternary widespread Japanese tephrostratigraphic markers and correlations to the Lake Suigetsu
1452 sedimentary archive (SG06 core). *Quaternary Geochronology* 52, 103–131, 2019.

1453 Alloway, B.V., Lowe, D.J., Barrell, D.J.A., Newnham, R.M., Almond, P.C., Augustinus, P.C., Bertler, N.A.,
1454 Carter, L., Litchfield, N.J., McGlone, M.S., Shulmeister, J., Vandergoes, M.J., Williams, P.W., and NZ-
1455 INTIMATE members.: Towards a climate event stratigraphy for New Zealand over the past 30,000 years
1456 (NZ-INTIMATE project). *Journal of Quaternary Science* 22, 9–35, 2007.

1457 Alloway, B.V., Froese, D.G., and Westgate, J.A.: Proceedings of the International Field Conference and
1458 Workshop of Tephrochronology and Volcanism: Dawson City, Yukon Territory, Canada (31 July–8
1459 August 2005). Institute of Geological and Nuclear Sciences Science Report 2005/22. 69 pp, 2005.

1460 Alloway, B.V., Lowe, D.J., Larsen, G., Shane, P.A.R., and Westgate, J.A.: Tephrochronology, in The
1461 Encyclopaedia of Quaternary Science, 2nd edition, edited by Elias, S.A., Mock, C.J., Elsevier, Amsterdam,
1462 4, 277–304, 2013.

1463 Ashworth, A. 2018. INQUA president's report. *Quaternary Perspectives* 25 (1), 1–2.

1464 Auer, V.: The Pleistocene of Fuego-Patagonia. Part IV: bog profiles. *Annales Academiae Scientiarum
1465 Fennicae, Series A, III. Geological-Geographica* 80, 1–160, 1965.

1466 Auer, V.: Tephrochronology in Tierra del Fuego and Patagonia, in The isorhythmicity subsequent to the
1467 Fuego-Patagonian and Fennoscandian ocean level transgressions and regressions of the latest glaciation –
1468 the significance of tephrochronology, C-14 dating and micropaleontology for Quaternary research. *Annales
1469 Academiae Scientiarum Fennicae, Series A, III. Geological-Geographica* 115, 5–32, 1974.

1470 Austin, W.E.N., Abbott, P.M., Davies, S.M., Pearce, N.J.G., and Wastegård, S. (editors): Marine
1471 tephrochronology: an introduction to tracing time in the ocean. Geological Society, London, Special
1472 Publication 398, 1–6, 2014a.

1473 Austin, W.E.N., Abbott, P.M., Davies, S.M., Pearce, N.J.G., and Wastegård, S. (editors): Marine
1474 tephrochronology. Geological Society, London, Special Publication 398, 1–213, 2014b.

1475 Barrell, D.J.A., Almond, P.C., Vandergoes, M.J., Lowe, D.J., Newnham, R.M., and NZ-INTIMATE
1476 members: A composite pollen-based stratotype for inter-regional evaluation of climatic events in New
1477 Zealand over the past 30,000 years (NZ-INTIMATE project). *Quaternary Science Reviews* 74, 4–20, 2013.

1478 Barton, R.N.E., Lane, C.S., Albert, P.G., White, D., Collycutt, S.N., Bouzouggar, A., Ditchfield, P., Farr, L.,
1479 Oh, A., Ottolini, L., Smith, V.C., Van Peer, P., and Kindermann, K.: The role of cryptotephra in refining
1480 the chronology of Late Pleistocene human evolution and cultural change in North Africa. *Quaternary
1481 Science Reviews* 118, 151–169, 2015.

1482 Baxter, P.J. and Horwell, C.J.: Impacts of eruptions on human health, in: The Encyclopaedia of Volcanoes,
1483 2nd edition, edited by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San
1484 Diego, 1035–1047, 2015.

1485 Begét, J.E., Stihler, S.D., and Stone, D.B. 1994. A 500-year-long record of tephra falls from Redoubt Volcano
1486 and other volcanoes in upper Cook Inlet, Alaska. *Journal of Volcanology and Geothermal Research* 62,
1487 55–67, 1994.

1488 Begét, J.E., Machida, H., and Lowe, D.J. (editors): Climatic impact of explosive eruptions – recommendations
1489 for research. *PAGES Workshop Report Series* 96-3, 1–28, 1996.

1490 Benediktsson, I.O., Björnsson, H., Larsen, G., and Sigmarsdóttir, O.: Glaciology and volcanology on the
1491 centenary of Sigurður Þórarinsson's birth: a special issue. *Jökull* 62, 1–2, 2012a.

1492 Benediktsson, I.O., Björnsson, H., Larsen, G., and Sigmarsdóttir, O. (editors): Glaciology and volcanology on
1493 the centenary of Sigurður Þórarinsson's birth: a special issue. *Jökull* 62, 1-184, 2012b.

1494 Bitschene, P.R. and Schmincke, H.-U.: Fallout tephra layers: composition and significance, in: *Sediments*
1495 and *Environmental Geochemistry. Selected aspects and case studies*, edited by Heling, D., Rothe, P.,
1496 Förstner, U., and Stoffers, P., Springer, Berlin, 48–82, 1990.

1497 Björnsson, H.: Obituary: Sigurdur Thórarinsson—1912–1983. *Journal of Glaciology* 29, 521–523, 1983.

1498 Blaauw, M., Christen, J.A., and Workshop Participants: Paleochronology building workshop. *PAGES News*
1499 19 (1), 34, 2011.

1500 Blaauw, M., Christen, J.A., Bennett, K.D., and Reimer, P.J.: Double the dates and go for Bayes – impacts of
1501 model choice, dating density and quality on chronologies. *Quaternary Science Reviews* 188, 58–66, 2018.

1502 Blockley, S.P.E., Blaauw, M., Bronk Ramsey, C., and van der Plicht, J.: Building and testing age models for
1503 radiocarbon dates in Lateglacial and Early Holocene sediments. *Quaternary Science Reviews* 26,
1504 1915–1926, 2007.

1505 Blockley, S.P.E., Bourne, A.J., Brauer, A., Davies, S.M., Harding, P.R., Lane, C.S., MacLeod, A., Matthews,
1506 I.P., Pyne-O'Donnell, S.D.F., Rasmussen, S.O., Wulf, S., and Zanchetta, G.: Tephrochronology and the
1507 extended intimate (integration of ice-core, marine and terrestrial records) event stratigraphy (8-128 ka
1508 b2k). *Quaternary Science Reviews* 106, 88-100, 2014.

1509 Blong, R., Enright, N., and Grasso, P.: Preservation of thin tephra. *Journal of Applied Volcanology* 6, 10,
1510 2017.

1511 Bolton, M.S.M., Jensen, B.J.L., Wallace, K., Praet, N., Fortin, D., Kaufman, D., and de Batist, M.: Machine
1512 learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras.
1513 *Journal of Quaternary Science* 35, 81–92, 2020.

1514 Bourne, A.J., Abbott, P.M., Albert, P.G., Cook, E., Pearce, N.J.G., Ponomareva, V., Svensson, A., and
1515 Davies, S.M.: Risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. *Science*
1516 Reports

6 (29837), 1–8, 2016.

1517 Bramlette, M.N. and Bradley, W.H.: Geology and biology of North Atlantic deep-sea cores between
1518 Newfoundland and Ireland. Part I. Lithology and geologic interpretation. U.S. Geological Survey
1519 Professional Paper 196-A, 1-34, 1940.

1520 Branney, M.J. and Kokelaar, P.: Pyroclastic density currents and the sedimentation of ignimbrites. *Geological*
1521 *Society Memoir* 27, 1–143, 2002.

1522 Bronk Ramsey, C., Albert, P.G., Blockley, S.P.E., Hardiman, M., Housley, R.A., Lane, C.S., Lee, S.,
1523 Matthews, I.P., Smith, V.C., and Lowe, J.J.: Improved age estimates for key Late Quaternary European
1524 tephra horizons in the RESET lattice. *Quaternary Science Reviews* 118, 18–32, 2015a.

1525 Bronk Ramsey, C., Housley, R.A., Lane, C.S., Smith, V.C., and Pollard, A.M.: The RESET tephra database
1526 and associated analytical tools. *Quaternary Science Reviews* 118, 33–47, 2015b.

1527 Brown, R.J. and Andrews, G.D.M.: Deposits of pyroclastic density currents, in: The Encyclopaedia of
1528 Volcanoes, 2nd edition, edited by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J.,
1529 Elsevier, San Diego, 631–648, 2015.

1530 Bruins, H.J., Keller, J., Klügel, A., Kisch, H.J., Katra, I., and van der Plicht, J.: Tephra in caves: distal deposits
1531 of the Minoan Santorini eruption and the Campanian super-eruption. *Quaternary International* 499, 135–
1532 147, 2019.

1533 Bunting, M.J., Blackford, J., Gehrels, M.J., and Gehrels, W.R.: In memoriam and dedication: Richard John
1534 Payne (1978–2019). *Journal of Quaternary Science* 35, 9–10, 2020.

1535 Bursik, M., Kuehn, S.C., Wallace, K.L., and Kurbatov, A.V.: “Tephra 2017 Workshop: best practices in
1536 tephra collection, analysis, and reporting leading toward better tephra databases”,
1537 <https://vhub.org/resources/4166>, 2017.

1538 Cameron, C.E., Mulliken, K.M., Crass, S.W., Schaefer, J.R., and Wallace, K.L.: Alaska Volcano Observatory
1539 geochemical database, version 2. Alaska Division of Geological and Geophysical Surveys Digital Data
1540 Series 8 v. 2, 22 pp., <https://www.avo.alaska.edu/geochem/> or <http://doi.org/10.14509/30058>, 2019.

1541 Cas, R.A.F.: IAVCEI: from small beginnings to a vibrant international association. *History of Geo- and Space
1542 Sciences* 10, 181–191, 2019.

1543 Cas, R.A.F.: The centenary of IAVCEI 1919–2019 and beyond: origins and evolution of the International
1544 Association of Volcanology and Chemistry of the Earth’s Interior. *Bulletin of Volcanology* 84, 15, 31 pp.,
1545 2022.

1546 Cas, R.A.F., and Wright, J.V.: *Volcanic Successions, Modern and Ancient*. Allen & Unwin, London. 528 pp.,
1547 1987.

1548 Cashman, K.V. and Sparks, R.S.J.: How volcanoes work: a 25 year perspective. *Geological Society of
1549 America Bulletin* 125, 664–690, 2013.

1550 Cashman, K.V. and Rust, A.C.: Far-travelled ash in past and future eruptions: combining tephrochronology
1551 with volcanic studies. *Journal of Quaternary Science* 35, 11–22, 2020.

1552 Cashman, K.V. and Scheu, B.: Magmatic fragmentation, in: The Encyclopaedia of Volcanoes, 2nd edition,
1553 edited by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San Diego,
1554 459–471, 2015.

1555 Cassidy, M., Watt, S.F.L., Palmer, M.R., Trofimovs, J., Symons, W., MacLachlan, S. E., Stinton, A.J.:
1556 Construction of volcanic records from marine sediment cores: a review and case study (Montserrat, West
1557 Indies). *Earth-Science Reviews* 138, 137–155, 2014.

1558 Catto, N.: Retrospective thoughts. *Quaternary International* 500, 5–6, 2019.

1559 Cioni, R., Pistolesi, M., and Rosi, M.: Plinian and subplinian eruptions, in: The Encyclopaedia of Volcanoes,
1560 2nd edition, edited by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San
1561 Diego, 519–535, 2015.

1562 Cole, J.W., Kohn, B.P., Pullar, W.A., Milne, J.D.G., Vucetich, C.G., and Healy, J.: Pyroclastic nomenclature
1563 in New Zealand. *New Zealand Journal of Geology and Geophysics* 15, 686–692, 1972.

1564 Colman, S.M., Pierce, K.L., and Birkeland, P.W.: Suggested terminology for Quaternary dating methods.
1565 *Quaternary Research* 28, 314–318, 1987.

1566 Committee for Publishing of Selected Papers by Professor Kunio Kobayashi.: Selected papers of Professor
1567 Kunio Kobayashi, Saitama, 673 pp., 1990 (in Japanese).

1568 Cooper, C.L., Swindles, G.T., Savov, I.P., Schmidt, A., and Bacon, K.L.: Evaluating the relationship between
1569 climate change and volcanism. *Earth-Science Reviews* 177, 238–247, 2018.

1570 Crandell, D.R. and Mullineaux, D.R.: Potential hazards from future eruptions of Mount St. Helens volcano,
1571 Washington. *U.S. Geological Survey Bulletin* 1383-C, 1–26, 1978.

1572 Crandell, D.R., Mullineaux, D.R., and Miller, C.D.: Volcanic-hazard studies in the Cascade Range of the
1573 western United States, in: *Volcanic Activity and Human Ecology*, edited by Sheets, P.D. and Grayson,
1574 D.K., Elsevier, 195–219, 1979.

1575 Crosweller, H.S., Arora, B., Brown, S.K., Cottrell, E., Deligne, N.I., Guerrero, N.O., Hobbs, L., Kiyosugi, K.,
1576 Loughlin, S.C., Lowndes, J., Nayembil, M., Siebert, L., Sparks, R.S.J., Takarada, S., and Venzke, E. 2012.:
1577 Global database on large magnitude explosive volcanic eruptions (LaMEVE). *Journal of Applied
1578 Volcanology* 1:4, doi:10.1186/2191-5040-1-4, 2012.

1579 Cutler, N.A., Shears, O.M., Streeter, R.T., and Dugmore, A.J.: Impact of small-scale vegetation structure on
1580 tephra layer preservation. *Scientific Reports* 6, 37260, 2016.

1581 Cutler, N.A., Streeter, R.T., Engwell, S.L., Bolton, M.S., Jensen, B.J.L., and Dugmore, A.J.: How does tephra
1582 deposit thickness change over time? A calibration exercise based on the 1980 Mount St Helens tephra
1583 deposit. *Journal of Volcanology and Geothermal Research* 399, 106883, 2020.

1584 Danišík, M., Schmitt, A.K., Stockli, D.F., Lovera, O.M., Dunkl, I., and Evans, N.J.: Application of combined
1585 U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology. *Quaternary Geochronology*
1586 40, 23–32, 2017.

1587 Danišík, M., Lowe, D.J., Schmitt, A.K., Friedrichs, B., Hogg, A.G., and Evans, N.J.: Sub-millennial eruptive
1588 recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian modelling of
1589 zircon double-dating and radiocarbon ages. *Quaternary Science Reviews* 246, 106517, 2020.

1590 Davies, S.M.: Cryptotephras: the revolution in correlation and precision dating. *Journal of Quaternary Science*
1591 30, 114–130, 2015.

1592 Davies, S.M. and Alloway, B.V.: Yukon ho! International Field Conference and Workshop on
1593 Tephrochronology and Volcanism. *Quaternary Australasia* 23(2), 16–18, 2006.

1594 Davies S.M., Branch N.P., Lowe J.J., and Turney C.S.M.: Towards a European tephrochronological
1595 framework for Termination 1 and the Early Holocene. *Philosophical Transactions of the Royal Society,
1596 London, Series A* 360, 767–802, 2002.

1597 Davies, S.M., Mortensen, A.K., Baillie, M.G.L., Clausen, H.B., Grönvold, K., Hall, V.A., Johnsen, S.J.,
1598 Pilcher, J.R., Steffensen, J.P., and Wastegård, S.: Tracing volcanic events in the Greenland ice cores.
1599 PAGES News 13(3), 10–11, 2004.

1600 Davies, S.M., Larsen, G., Wastegård, S., Turney, C.S.M., Hall, V.A., Coyle, L., and Thordarson, T.:
1601 Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past
1602 Icelandic events? *Journal of Quaternary Science* 25, 605–611, 2010.

1603 Davies, S.M., Abbott, P.M., Pearce, N.J.G., Wastegård, S., and Blockley, S.P.E.: Integrating the INTIMATE
1604 records using tephrochronology: rising to the challenge. *Quaternary Science Reviews* 36, 11–27, 2012.

1605 Davies, S.M., Abbott, P.M., Meara, R.H., Pearce, N., Austin, W., Chapman, M., Svensson, A., Bigler, M.,
1606 Rasmussen, T., Rasmussen, S., and Farmer, E.: A North Atlantic tephrostratigraphical framework for 130–
1607 60 ka b2k: new tephra discoveries, marine-based correlations, and future challenges. *Quaternary Science*
1608 *Reviews* 106, 101–121, 2014.

1609 Dugmore, A.J.: Icelandic volcanic ash in Scotland. *Scottish Geographical Magazine* 105, 168–172, 1989.

1610 Dugmore, A.J. and Newton, A.J.: Tephrochronology, in *Encyclopaedia of Paleoclimatology and Ancient*
1611 *Environments*, edited by Gornitz, V., Springer, Dordrecht, 937–938, 2009.

1612 Dugmore, A.J. and Newton, A.J.: Isochrons and beyond: maximising the use of tephrochronology in
1613 geomorphology. *Jökull* 62, 39–52, 2012.

1614 Dugmore, A.J., Newton, A.J., Edwards, K.J., Larsen, G., Blackford, J.J., and Cook, G.T.: Long-distance
1615 marker horizons from small-scale eruptions: British tephra deposits from the AD 1510 eruption of Hekla,
1616 Iceland. *Journal of Quaternary Science* 11, 511–516, 1996.

1617 Dugmore, A.J., Larsen, G., Newton, A.J.: Tephrochronology and its application to Late Quaternary
1618 environmental reconstruction, with special reference to the North Atlantic islands, in *Tools for*
1619 *Constructing Chronologies – Crossing Discipline Boundaries*, edited by Buck, C.E. and Millard, A.R.,
1620 *Lecture Notes In Statistics*, Springer, 173–188, 2004.

1621 Dugmore, A.J., Newton, A.J., and Smith, K.T.: Workshop on the Eyjafjallajökull eruptions of 2010 and
1622 implications for tephrochronology, volcanology and Quaternary studies. *Tephra in Quaternary Science*
1623 (TIQS). Edinburgh Workshop Report and Community Statement. 15 pp,
1624 https://www.tephrabase.org/tiqs2011/tiqs2011_report.pdf, 2011.

1625 Dugmore, A.J., Thompson, P.I., Streeter, R.T., Cutler, N.A., Newton, A.J., and Kirkbride, M.P.: The
1626 interpretative value of transformed tephra sequences. *Journal of Quaternary Science* 35, 23–38, 2020.

1627 Eden D.N. and Ferkert, R.J. (editors): *Loess: its Distribution, Geology and Soils*. Balkema, Rotterdam, 245
1628 pp., 1988.

1629 Eden, D.N., Foggatt, P.C., and McIntosh, P.D.: The distribution and composition of volcanic glass in late
1630 Quaternary loess deposits of southern South Island, New Zealand, and some possible correlations. *New*
1631 *Zealand Journal of Geology and Geophysics* 35, 69–79, 1992.

1632 Eden, D.N., Froggatt, P.C., Zheng, H., and Machida, H.: Volcanic glass found in Late Quaternary Chinese
1633 loess: a pointer for future studies? *Quaternary International* 34–36, 107–111, 1996.

1634 Einarsson, Th.: Á sjötugsafmæli Sigurðar Þórarinssonar [In the seventies of Sigurður Thórarinsson], in: Eldur
1635 er í norðri: afmælisrit helgað Sigurði Þórarinssyni sjötugum 8. Janúar 1982 [Fire in the north: an
1636 anniversary book dedicated to Sigurður Thórarinsson's 70 on January 8, 1982], edited by Thórarinsdóttir,
1637 H., Óskarsson, Ó.H., Steinhörsson, S., and Einarsson, Th., Sögufélag, Reykjavík, IX–XVI, 1982 (in
1638 Icelandic).

1639 Einarsson, Th.: Tephrochronology, in: *Handbook of Holocene Palaeoecology and Palaeohydrology*, edited by
1640 Berglund, B.E., Wiley, Chichester, 329–342, 1986.

1641 Elston, W. and Heiken, G.: IAVCEI Working Group on Explosive Volcanism. *EOS* 65 (26), 411, 1984.

1642 Fairbridge, R.W.: INQUA in New Zealand. *Geology* 2, 505–506, 1974.

1643 Feibel, C.S.: Tephrostratigraphy and geological context in paleoanthropology. *Evolutionary Anthropology* 8,
1644 87–100, 1999.

1645 Firth, C.R.: Preface [to 'Volcanoes in the Quaternary']. Geological Society, London, Special Publication 161,
1646 vii–viii, 1999.

1647 Firth, C.R. and McGuire, W.J. (editors): *Volcanoes in the Quaternary*. Geological Society, London, Special
1648 Publication 161, 1–220, 1999.

1649 Fisher, R.V. and Schmincke, H.U. *Pyroclastic Rocks*. Springer, Berlin. 472 pp., 1984.

1650 Freundt, A., Wilson, C.J.N., Carey, S.N.: Ignimbrites and block-and-ash flow deposits, in: *Encyclopaedia of
1651 Volcanoes*, 1st edition, edited by Sigurdsson, H., Houghton, B.F., Rymer, H., Stix, J., and McNutt, S.,
1652 Academic Press, San Diego, 581–599, 2000.

1653 Freundt, A., Schindlbeck-Belo, J.C., Kutterolf, S., and Hopkins, J.L.: Tephra layers in the marine
1654 environment: a review of properties and emplacement processes. Geological Society, London, Special
1655 Publication 520, DOI: <https://doi.org/10.1144/SP520-2021-50>, 2021.

1656 Froese, D.G., Westgate, J.A., and Alloway, B.V. (editors): *Field Trip Guide for the International Field
1657 Conference and Workshop of Tephrochronology and Volcanism: Dawson City, Yukon Territory, Canada
1658 (31 July–8 August 2005)*. Institute of Geological and Nuclear Sciences Science Report 2005/26. 132 pp,
1659 2005.

1660 Froese, D.G., Lowe, D.J., Knott, J.R., and Slate, J.L.: Preface – Global tephra studies: John Westgate and
1661 Andrei Sarna-Wojcicki commemorative volume. *Quaternary International* 178, 1–3, 2008a.

1662 Froese, D.G. Lowe, D.J., Knott, J., and Slate, J.L. 2008b. John A. Westgate — global tephrochronologist,
1663 stratigrapher, mentor. *Quaternary International* 178, 4–9, 2008b.

1664 Froese, D.G., Slate, J., Lowe, D.J., and Knott, J.R. (editors): *Global tephra studies: John Westgate and Andrei
1665 Sarna-Wojcicki commemorative volume*. *Quaternary International* 178, 1–319, 2008c.

1666 Froggatt, P.C.: Standardization of the chemical analysis of tephra deposits. Report of the ICCT working
1667 group. *Quaternary International* 13–14, 93–96, 1992.

1668 Froggatt, P.C. and Lowe, D.J.: A review of late Quaternary silicic and some other tephra formations from
1669 New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. *New Zealand Journal of*
1670 *Geology and Geophysics* 33, 89–109, 1990.

1671 Gage, M. (editor): Report on stratigraphic nomenclature in the New Zealand Quaternary. National Committee
1672 for Quaternary Research, The Royal Society of New Zealand, Wellington, 1–25, 1977.

1673 Gehrels, M.J., Newnham, R.M., Lowe, D.J., Wynne, S., Hazell, Z.J., and Caseldine, C.: Towards rapid assay
1674 of cryptotephra in peat cores: review and evaluation of various methods. *Quaternary International* 178,
1675 68–84, 2008.

1676 Good, G.A.: The assembly of geophysics: scientific disciplines as frameworks of consensus. *Studies in*
1677 *History and Philosophy of Modern Physics* 31, 259–292, 2000.

1678 Gudmundsdóttir, E.R., Larsen, G., Björck, S., Ingólfsson, O., and Stríberger, J.: A new high-resolution
1679 Holocene tephra stratigraphy in eastern Iceland: improving the Icelandic and North Atlantic
1680 tephrochronology. *Quaternary Science Reviews* 150, 234–249, 2016.

1681 Gudmundsson, M.T., Pedersen, R., Vogfjörd, K., Thorbjarnardóttir, Jakobsdóttir, S., Roberts, M.J.: Eruptions
1682 of Eyjafjallajökull Volcano, Iceland. *EOS* 91 (21), 190–191, 2010.

1683 Hall, V.A. and Alloway, B.V. (editors): *Tephra*. PAGES News 13(3), 5–17, 2004.

1684 Hall, M. and Hayward, C.: Preparation of micro- and crypto-tephras for quantitative microbeam analysis.
1685 Geological Society, London, Special Publication 398, 21–28, 2014.

1686 Hall, V.A. and Pilcher, J.R.: Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection,
1687 characterization and usefulness. *The Holocene* 12, 223–230, 2002.

1688 Hayward, C.: High spatial resolution electron probe microanalysis of tephras and melt inclusions without
1689 beam-induced chemical modification. *The Holocene* 22, 119–125, 2012.

1690 Heiken, G. and Wohletz, K.: Tephra deposits associated with silicic domes and lava flows. *Geological Society*
1691 *of America Special Paper* 212, 55–76, 1987.

1692 Hirniak, J., Smith, E.I., Johnsen, R., Ren, M., Hodgkins, J., Orr, C., Negrino, F., Riel-Salvatore, J., Fitch, S.,
1693 Miller, C.E., Zerboni, A., Mariani, G.S., Harris, J.A., Gravel-Miguel, C., Strait, D., Peresani, M., Benazzi,
1694 S., and Marean, C.W.: Discovery of cryptotephra at Middle-Upper Paleolithic sites Arma Veirana and
1695 Riparo Bombrini, Italy: A new link for broader geographic correlations. *Journal of Quaternary Science* 35,
1696 199–212, 2020.

1697 Hodder, A.P.W. and Wilson, A.T.: Identification and correlation of thinly bedded tephra: the Tirau and
1698 Mairoa Ashes. *New Zealand Journal of Geology and Geophysics* 19, 663–682, 1976.

1699 Hogg, A.G. and McCraw, J.D.: Late Quaternary tephras of Coromandel Peninsula, North Island, New Zealand:
1700 a mixed peralkaline and calcalkaline tephra sequence. *New Zealand Journal of Geology and Geophysics*
1701 26, 263–301, 1983.

1702 Hopkins, J.L., Bidmead, J.E., Lowe, D.J., Wysoczanski, R.J., Pillans, B.J., Ashworth, L., Rees, A.B., and
1703 Tuckett, F.: TephraNZ, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [code],
1704 <https://doi.org/10.26022/IEDA/111724>, 2020.

1705 Hopkins, J.L., Lowe, D.J., and Horrocks, J.H.: Tephrochronology in Aotearoa New Zealand. *New Zealand
1706 Journal of Geology and Geophysics* 64, 153–200, 2021a.

1707 Hopkins, J.L., Bidmead, J.E., Lowe, D.J., Wysoczanski, R.J., Pillans, B.J., Ashworth, L., Rees, A.B.H., and
1708 Tuckett, F.: TephraNZ: a major- and trace-element reference dataset for glass-shard analyses from
1709 prominent Quaternary rhyolitic tephras in New Zealand and implications for correlation. *Geochronology* 3,
1710 465–504 (<https://doi.org/10.5194/gchron-3-465-2021>), 2021b.

1711 Holt, K.A. and Lowe, D.J.: Active tephra in Kyushu 2010: international field conference. *Quaternary
1712 Australasia* 27 (2), 7–10, 2010.

1713 Houghton, B.F.: Explosive volcanism [Part IV], in: *The Encyclopaedia of Volcanoes*, 2nd edition, edited by
1714 Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San Diego, 457–458, 2015.

1715 Houghton, B.F. and Wilson, C.J.N.: Explosive rhyolitic volcanism: the case studies of Mayor Island and
1716 Taupo volcanoes. *New Zealand Geological Survey Record* 12, 33–100, 1986.

1717 Howorth, R. New formations of late Pleistocene tephras from the Okataina Volcanic Centre, New Zealand.
1718 *New Zealand Journal of Geology and Geophysics* 18, 683–712, 1975.

1719 Howorth, R., Froggatt, P.C., Vucetich, C.G., and Collen, J.D. (editors): *Proceedings of Tephra Workshop*, 30
1720 June–1 July, 1980, Victoria University of Wellington. Geology Department, Victoria University of
1721 Wellington Publication 20, 1–100, 1981.

1722 Huang, T.C., Watkins N.D., and Shaw D.M.: Atmospherically transported volcanic glass in deep-sea
1723 sediments: development of a separation and counting technique. *Deep-Sea Research* 22, 185–196, 1975.

1724 Hunt, J.B.: Foreword [to ‘Distal tephrochronology, tephrology and volcano-related atmospheric effects’].
1725 *Global and Planetary Change* 21, vii–viii, 1999a.

1726 Hunt, J.B. (editor): *Distal tephrochronology, tephrology and volcano-related atmospheric effects*. *Global and
1727 Planetary Change* 21, 1–196, 1999b.

1728 Hunt, J.B.: Peter Graham Hill (1942–2010) – inspirational tephra analyst and mentor. *Quaternary
1729 International* 246, 17–18, 2011.

1730 Hunt, J.B. and Hill, P.G.: Tephra geochemistry: a discussion of some persistent analytical problems. *The
1731 Holocene* 3, 271–278, 1993.

1732 Hunt, J.B. and Hill, P.G.: An inter-laboratory comparison of the electron probe microanalysis of glass
1733 geochemistry. *Quaternary International* 34–36, 229–241, 1996.

1734 Hunt, J.B. and Hill, P.G.: Tephrological implications of beam size – sample-size effects in electron
1735 microprobe analysis of glass shards. *Journal of Quaternary Science* 16, 105–117, 2001.

1736 Hunt, J.B., Clift, P.D., Lacasse, C., Vallier, T.L., and Werner, R.: Interlaboratory comparison of electron
1737 probe microanalysis of glass geochemistry, in: *Proceedings of the Ocean Drilling Program, Scientific*
1738 *Results*, edited by Saunders, A.D., Larsen, H.C., and Wise, S.W. Jr., 152, 85–91, 1998.

1739 Ismail-Zadeh, A.: Geoscience international: the role of scientific unions. *History of Geo- and Space Sciences*
1740 7, 103–123, 2016.

1741 Iverson, N.A., Kalteyer, D., Dunbar, N.W., Kurbatov, A., and Yates, M.: Advancements and best practices for
1742 analysis and correlation of tephra and cryptotephra in ice. *Quaternary Geochronology* 40, 45–55, 2017.

1743 Jensen, B.J.L., Pyne-O'Donnell, S., Plunkett, G., Froese, D.G., Hughes, P.D.M., Sigl, M., McConnell, J.R.,
1744 Amesbury, M.J., Blackwell, P.G., van den Bogaard, C., Buck, C.E., Charman, D.J., Clague, J.J., Hall,
1745 V.A., Koch, J., Mackay, H., Mallon, G., McColl, L., and Pilcher, J.R.: Transatlantic distribution of the
1746 Alaskan White River ash. *Geology* 42, 875–878, 2014.

1747 Jensen, B.J.L., Davies, L., Nolan, C., Pyne-O'Donnell, S., Monteath, A.J., Ponomareva, V., Portnyagin, M.,
1748 Booth, R., Bursik, M., Cook, E., and Plunkett, G.: A latest Pleistocene and Holocene composite
1749 tephrostratigraphic framework for northeastern North America. *Quaternary Science Reviews* 272, 107242,
1750 2021.

1751 Jones, G., Davies, S.M., Staff, R.A., Loader, N.J., Davies, S.J., and Walker, M.J.C.: Traces of volcanic ash
1752 from the Mediterranean, Iceland and North America in a Holocene record from south Wales, UK. *Journal*
1753 *of Quaternary Science* 35, 163–174, 2020.

1754 Juvigné, É.T.: La téphrostratigraphie et sa nomenclature de base en langue Française: mises au point et
1755 suggestions. [Tephrostratigraphy and its basic nomenclature in the French language: clarifications and
1756 suggestions]. *Annales de la Société Géologique de Belgique* 113, 295–298, 1990 (in French).

1757 Juvigné, É.T. and Raynal, J.-P.: Avant-propos [to 'Tephras – chronology, archaeology']. *Les Dossiers de*
1758 *l'Archéo-Logis* 1, 7–8, 2001a (in French).

1759 Juvigné, É.T. and Raynal, J.-P. (editors): Tephras – chronology, archaeology. *Les Dossiers de l'Archéo-*
1760 *Logis* 1, 1–262, 2001b (in French and English).

1761 Juvigné, É.T., Lenoble-Pinson, M., and Raynal, J.-P.: Tephra nomenclatura en langue Française. *Les Dossiers*
1762 *de l'Archéo-Logis* 1, 11–15, 2001.

1763 Kaizuka, S. (compiler): Reports of the IX Congress of the International Union for Quaternary Research [in
1764 Christchurch]. *The Quaternary Research (Daiyonki-Kenkyu)* 13, 71–90, 1974.

1765 Kalliokoski, M., Gudmundsdóttir, E.R., and Wastegård, S.: Hekla 1947, 1845, 1510 and 1158 tephra in
1766 Finland: challenges of tracing tephra from moderate eruptions. *Journal of Quaternary Science* 35, 803–816,
1767 2020.

1768 Karátson, D., Veres, D., and Lowe, D.J.: INTAV tephra conference “Crossing New Frontiers: Tephra Hunt in
1769 Transylvania”, 24 June–1 July, 2018, Moieciu de Sus, Romania. *IAVCEI News* 4/2018, 9–11, 2018.

1770 Kennett, J.P.: Marine tephrochronology, in: *The Sea – Volume 7: The Oceanic Lithosphere*, edited by
1771 Emiliani, C., Wiley, New York, 1373–1436, 1981.

1772 Kennett, J.P. and Watkins, N.D.: Geomagnetic polarity change, volcanic maxima and faunal extinction in the
1773 South Pacific. *Nature* 227, 930–934, 1970.

1774 Kile, D.E.: Memorial of Ray E. Wilcox, 1912–2012. *American Mineralogist* 98, 1372–1374, 2013.

1775 Kinder, M., Wulf, S., and Appelt, O.: Detection of the historical Askja AD 1875 and modern Icelandic
1776 cryptotephras in varved lake sediments – results from a first systematic search in northern Poland. *Journal*
1777 of Quaternary Science

1778 36, 1–7, 2021.

1779 Kittleman, L.R.: Geologic methods in studies of Quaternary tephra, in: *Volcanic Activity and Human*
1780 *Ecology*, edited by Sheets, P.D. and Grayson, D.K., Elsevier, 49–82, 1979.

1781 Klaes, B., Wörner, G., Kremer, K., Simon, K., Scholz, D., Mueller, C., Hoschen, C., Struck, J., Arz, H., Sören,
1782 T.-B., Schimpf, D., and Kilian, R.: High-resolution stalagmite stratigraphy supports the Late Holocene
1783 tephrochronology of southernmost Patagonia. *Communications Earth and Environment* 3, 23,
<https://doi.org/10.1038/s43247-022-00358-0>, 2022.

1784 Knox, R.W. O'B.: Tephra layers as precise chronostratigraphical markers, in: *High Resolution Stratigraphy*,
1785 edited by Hailwood, E.A. and Kidd, R.B., Geological Society (London) Special Publication 70, 169–186,
1786 1993.

1787 Kobayashi, K.: Report from the VIth Congress of INQUA (Warszawa). *The Quaternary Research (Daiyonki-*
1788 *Kenkyu)* 2, 125–132, 1962 (in Japanese).

1789 Kobayashi, K.: Report from the conference on tephrochronology held at the VIth International Congress of
1790 INQUA. Report on the VIth International Congress on Quaternary, Warsaw (1961) 1, 781–789, 1965.

1791 Kobayashi, K.: Methods of identification of particular tephra layers. *Études sur le Quaternaire dans le Monde*,
1792 VIIIth INQUA Congrès Paris, compiled by Ters, M., Centre National de la Recherche Scientifique 2,
1793 981–984, 1969.

1794 Kobayashi, K.: Some basic problems in tephrochronology. *The Quaternary Research (Daiyonki-Kenkyu)* 11,
1795 211–218, 1972 (in Japanese).

1796 Kobayashi, K. and Shimizu, H.: Pleistocene tephras in the northern part of Ina Valley, central Japan. *Journal*
1797 of the Faculty of Liberal Arts and Science, Shinshu University 12, 20–52, 1962.

1798 Krüger, S. and van den Bogaard, C.: Small shards and long distances – three cryptotephra layers from the
1799 Nahe palaeolake including the first discovery of Laacher See Tephra in Schleswig–Holstein (Germany).
1800 *Journal of Quaternary Science* 36, 8–19, 2021.

1801 Kuehn, S.C.: Concord EPMA_Oxides_METHOD_FeTi-Ox1.0, Version 1.0. Interdisciplinary Earth Data
1802 Alliance (IEDA), <https://doi.org/10.26022/IEDA/112110>, 2021a.

1803 Kuehn, S.C.: Concord EPMA_Glass_METHOD_6.0, Version 1.0. Interdisciplinary Earth Data Alliance
1804 (IEDA), <https://doi.org/10.26022/IEDA/112102>, 2021b.

1805 Kuehn, S.C. and Froese, D.G.: 2010. Tephra from ice – a simple method to routinely mount, polish, and
1806 quantitatively analyze sparse fine particles. *Microscopy and Microanalysis* 16, 218–225, 2010.

1807 Kuehn, S.C. and Hostetler, A.: Summer Lake Pliocene Tephra Dataset [Version 1.0].
1808 Zenodo, <https://doi.org/10.5281/zenodo.4072461>, 2020.

1809 Kuehn, S.C. and Lyon, E.: June Lake Tephra Dataset [Version 1.0]. Zenodo,
1810 <https://doi.org/10.5281/zenodo.4074290>, 2020.

1811 Kuehn, S.C., Froese, D.G., Shane, P.A.R., and INTAV intercomparison participants: The INTAV
1812 intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and
1813 recommendations. *Quaternary International* 246, 19–47, 2011.

1814 Kuehn, S.C., Pouget, S., Wallace, K., and Bursik, M.I.: Results of the tephra 2014 workshop on maximizing
1815 the potential of tephra for multidisciplinary science, in: AGU Fall Meeting Abstracts, 1, 4758.
1816 <http://dx.doi.org/10.13140/RG.2.1.2454.0002> abstract #V31C-4758, 2014.

1817 Kuehn, S.C., Bursik, M.I., Goring, S.J., Kodama, S., Kurbatov, A., Lehnert, K., Profeta, L., Quinn, D.,
1818 Ramdeen, S., Wallace, K., and Walker, J.D.: Making tephra data FAIR and connected through community-
1819 driven best practices for digital data collection and documentation. EarthCube Annual Meeting, June 15–
1820 17, <http://dx.doi.org/10.13140/RG.2.2.28695.50083> <https://doi.org/10.6084/m9.figshare.14773083.v1>,
1821 2021.

1822 Kyle, P.R. and Seward, D.: Dispersed rhyolitic tephra from New Zealand in deep-sea sediments of the
1823 Southern Ocean. *Geology* 12, 487–490, 1984.

1824 Lane, C.S. and Woodward, C.: Tephrochronology, in: *Encyclopaedia of Geoarchaeology*, 2nd edition, edited
1825 by Gilbert, A.S., Springer, Dordrecht, 1–9, https://doi.org/10.1007/978-1-4020-4409-0_185, 2022.

1826 Lane, C., Haslam, M., Petraglia, M., Ditchfield, P., Smith, V., and Korisettar, R: Cryptotephra from the 74 ka
1827 BP Toba super-eruption in the Billa Surgam caves, southern India. *Quaternary Science Reviews* 30,
1828 1819–1824, 2011.

1829 Lane, C.S., Chorn, B.T., and Johnson, T.C.: Ash from the Toba supereruption in Lake Malawi shows no
1830 volcanic winter in East Africa at 75 ka. *Proceedings of the National Academy of Sciences of the United
1831 States of America* 110, 8025–8029, 2013.

1832 Lane, C.S., Cullen, V.L., White, D., Bramham-Law, C.W.F., and Smith, V.C.: Cryptotephra as a dating and
1833 correlation tool in archaeology. *Journal of Archaeological Science* 42, 42–50, 2014.

1834 Lane, C.S., Lowe, D.J., Blockley, S.P.E., Suzuki, T., and Smith, V.C.: Advancing tephrochronology as a
1835 global dating tool: applications in volcanology, archaeology, and palaeoclimatic research. *Quaternary
1836 Geochronology* 40, 1–7, 2017a.

1837 Lane, C.S., Blockley, S.P.E., Lowe, D.J., Suzuki, T., and Smith, V.C. (editors): Advancing tephrochronology
1838 as a global dating tool: applications in volcanology, archaeology, and palaeoclimatic research. *Quaternary
1839 Geochronology* 40, 1–145, 2017b.

1840 Larsen, G. and Thórarinsson, S.: H-4 and other acid Hekla tephra layers. *Jökull* 27, 28–46, 1977.

1841 Larsen, G. and Eiríksson, J.: Late Quaternary terrestrial tephrochronology of Iceland – frequency of explosive
1842 eruptions, type and volume of tephra deposits. *Journal of Quaternary Science* 23, 109-120, 2008.

1843 Larsson, S.A., Kylander, M.E., Sennel, A.B.K., and Hammarlund, D.: Synchronous or not? The timing of the
1844 Younger Dryas and Greenland Stadial-1 reviewed using tephrochronology. *Quaternary* 5, 19,
1845 <https://doi.org/10.3390/quat5020019>, 2022.

1846 Lawson, I.T., Swindles, G.T., Plunkett, G., and Greenberg, D.: The spatial distribution of Holocene
1847 cryptotephras in north-west Europe since 7 ka: implications for understanding ash fall events from
1848 Icelandic eruptions. *Quaternary Science Reviews* 41, 57–66, 2012.

1849 Leicher, N., Giaccio, B., Zanchetta, G., Wagner, B., Francke, A., Palladino, D.M., Sulpizio, R., Albert, P.G.,
1850 and Tomlinson, E.L.: Central Mediterranean explosive volcanism and tephrochronology during the last 630
1851 ka based on the sediment record from Lake Ohrid. *Quaternary Science Reviews* 226, 106021, 2019.

1852 Leicher, N., Giaccio, B., Zanchetta, G., Sulpizio, R., Albert, P.G., Tomlinson, E.L., Lagos, M., Francke, A.,
1853 and Wagner, B.: Lake Ohrid's tephrochronological dataset reveals 1.36 Ma of Mediterranean explosive
1854 volcanic activity. *Nature Scientific Data* 8, 231 (<https://doi.org/10.1038/s41597-021-01013-7>), 2021.

1855 Le Maitre, R.W. (editor): *Igneous Rocks – A Classification and Glossary of Terms. Recommendations of the*
1856 *International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks.*
1857 Cambridge University Press, Cambridge, 236 pp., 2002.

1858 Lowe, D.J.: Controls on the rates of weathering and clay mineral genesis in airfall tephra: a review and New
1859 Zealand case study, in: *Rates of Chemical Weathering of Rocks and Minerals*, edited by Colman, S.M.,
1860 and Dethier, D.P., Academic Press, Orlando, 265–330, 1986.

1861 Lowe, D.J.: Late Quaternary volcanism in New Zealand: towards an integrated record using distal airfall
1862 tephra in lakes and bogs. *Journal of Quaternary Science* 3, 111–120, 1988.

1863 Lowe, D.J.: Tephra studies in New Zealand: an historical review. *Journal of the Royal Society of New*
1864 *Zealand* 20, 119–150, 1990a.

1865 Lowe, D.J.: Burning mountains, boiling rivers, and exploding soils. Report on INQUA-ICCT Field
1866 Conference and Workshop on Tephrochronology, Mammoth Hot Springs, USA. *New Zealand Soil News*
1867 38, 125–129, 1990b.

1868 Lowe, D.J. (editor): INQUA Commission on Tephrochronology COT Newsletter 2. Department of Earth
1869 Sciences, University of Waikato, Hamilton. 13 pp, 1992.

1870 Lowe, D.J. (editor): INQUA Commission on Tephrochronology COT Newsletter 3. Department of Earth
1871 Sciences, University of Waikato, Hamilton. 28 pp, 1994a.

1872 Lowe, D.J. (editor): Intra-conference and Post-conference Tour Guides. International Inter-INQUA Field
1873 Conference on Tephrochronology, Loess, and Paleopedology, University of Waikato, Hamilton, New
1874 Zealand. 186 pp, 1994b.

1875 Lowe, D.J.: Site-seeing in Germany. A report on the International Union for Quaternary Research (INQUA)
1876 14th International Congress, 3–10 August 1995, Berlin, Germany. *New Zealand Soil News* 43, 253–260,
1877 1995.

1878 Lowe, D.J.: The Commission on Tephra Studies: a report from the XIV International Inqua Congress, Berlin.
1879 *Geological Society of New Zealand Newsletter* 109, 30–33, 1996a.

1880 Lowe, D.J.: Preface [to ‘Tephra, loess, and paleosols – an integration’]. *Quaternary International* 34–36, 1,
1881 1996b.

1882 Lowe, D.J. (editor): *Tephra, loess, and paleosols – an integration*. *Quaternary International* 34–36, 1–261,
1883 1996c.

1884 Lowe, D.J.: Globalization of tephrochronology: new views from Australasia. *Progress in Physical Geography*
1885 32, 311–335, 2008.

1886 Lowe, D.J.: Tephrochronology and its application: a review. *Quaternary Geochronology* 6, 107–153, 2011a.

1887 Lowe, D.J.: Active Tephra 2010: International field conference on tephrochronology. *PAGES News* 19 (1),
1888 33, 2011b.

1889 Lowe, D.J.: Final report for INTREPID Tephra-I Project (INQUA-0907). *Quaternary Perspectives* 20 (1),
1890 8–11, 2013.

1891 Lowe, D.J.: Marine tephrochronology: a personal perspective. *Geological Society, London, Special*
1892 *Publication* 398, 7–19, 2014.

1893 Lowe, D.J.: IFG on tephrochrononology and volcanism (INTAV) project “Enhancing tephrochronology as a
1894 global research tool through improved fingerprinting and correlation techniques and uncertainty modelling
1895 (phase II)” (INTREPID Tephra-II: INQUA-1307s): final report. *Quaternary Perspectives* 22 (2), 12–15,
1896 2015.

1897 Lowe, D.J.: News from INTAV [report on EXTRAS Project: INQUA-1710P]. *Quaternary Perspectives* 25 (1),
1898 9–10, 2018a.

1899 Lowe, D.J.: Report on the INTAV international tephra conference “Crossing New Frontiers: Tephra Hunt in
1900 Transylvania”. *Quaternary Perspectives* 25 (2), 9–11, 2018b.

1901 Lowe, D.J. and Alloway, B.V.: Tephrochronology, in: *Encyclopaedia of Scientific Dating Methods*, edited by
1902 Rink, W.J. and Thompson, J.W., Springer, Dordrecht, 783–799, 2015.

1903 Lowe, D.J. and Hunt, J.B.: A summary of terminology used in tephra-related studies. *Les Dossiers de*
1904 *l’Archeo-Logis* 1, 17–22, 2001.

1905 Lowe, D.J. and Pittari, A. 2019. Pyroclastic flow deposits, Hinuera Valley, central North Island, and note on
1906 usage of ignimbrite as a building material. *Geoscience Society of New Zealand Journal of the Historical*
1907 *Studies Group* 61, 6–15, 2019.

1908 Lowe, D.J., Hogg, A.G., and Hendy, C.H.: Detection of thin tephra deposits in peat and organic lake
1909 sediments by rapid X-radiography and X-ray fluorescence techniques, in: *Proceedings of Tephra*
1910 *Workshop 1980*, edited by Howorth, R., Frogatt, P.C., Vucetich, C.G., and Collen, J.D., *Geology*
1911 *Department, Victoria University of Wellington Publication* 20, 74–77, 1981.

1912 Lowe, D.J., Newnham, R.M., and McCraw, J.D.: Volcanism and early Maori society in New Zealand, in:
1913 *Natural Disasters and Cultural Change*, edited by Torrence, R. and Grattan, J., Routledge, London,
1914 126–161, 2002.

1915 Lowe, D.J., Tonkin, P.J., Neall, V.E., Palmer, A.S., Alloway, B.V., and Froggatt, P.C.: Colin George Vucetich
1916 (1918–2007) – pioneering New Zealand tephrochronologist. *Quaternary International* 178, 11–15, 2008a.

1917 Lowe, D.J., Shane, P.A.R., Alloway, B.V., and Newnham, R.M.: Fingerprints and age models for widespread
1918 New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE.
1919 *Quaternary Science Reviews* 27, 95–126, 2008b.

1920 Lowe, J. John, Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z., and
1921 INTIMATE group: Synchronisation of palaeoenvironmental events in the North Atlantic region during the
1922 Last Termination: a revised protocol recommended by the INTIMATE group. *Quaternary Science Reviews*
1923 27, 6–17, 2008.

1924 Lowe, D.J., Davies, S.M., Moriwaki, H., Pearce, N.J.G., and Suzuki, T.: Enhancing tephrochronology and its
1925 application (INTREPID project): Hiroshi Machida commemorative volume. *Quaternary International* 246,
1926 1–5, 2011a.

1927 Lowe, D.J., Moriwaki, H., Davies, S.M., Suzuki, T., and Pearce, N.J.G. (editors): Enhancing
1928 tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume.
1929 *Quaternary International* 246, 1–395, 2011b.

1930 Lowe, D.J., Alloway, B.V., Shane, P.A.R.: Far-flown markers, in *A Continent on the Move: New Zealand*
1931 *Geoscience Revealed*, 2nd Edition, edited by Graham, I., Geoscience Society of New Zealand (GSNZ)
1932 with GNS Science, Wellington. GSNZ Miscellaneous Publication 141, 172–175, 2015a.

1933 Lowe, J. John, Bronk Ramsey, C., Housley, R.A., Lane, C.S., Tomlinson, E.L., RESET Team, and RESET
1934 Associates: [Introduction] The RESET project: constructing a European tephra lattice for refined
1935 synchronisation of environmental and archaeological events during the last c. 100 ka. *Quaternary Science*
1936 *Reviews* 118, 1–17, 2015.

1937 Lowe, D.J., Pearce, N.J.G., Jorgensen, M.A., Kuehn, S.C., Tryon, C.A., and Hayward, C.L.: Correlating
1938 tephras and cryptotephras using glass compositional analyses and numerical and statistical methods:
1939 review and evaluation. *Quaternary Science Reviews* 175, 1–44, 2017a.

1940 Lowe, D.J., Pearce, N.J.G., Jorgensen, M.A., Kuehn, S.C., Tryon, C.A., and Hayward, C.L.: Dedication (to
1941 Stephen Stokes 1964–2014). *Quaternary Science Reviews* 175, 35, 2017b.

1942 Lowe, D.J. and members of the local organising committee and INTAV executive committee: Foreword:
1943 Crossing New Frontiers, in: *Book of Abstracts. Crossing New Frontiers: INTAV International Field*
1944 *Conference on Tephrochronology*, edited by Hambach, U. and Veres, D., Moieciu de Sus, Romania (24
1945 June–1 July 2018), 1–5, 2018. http://www.bayceer.uni-bayreuth.de/intav2018/en/key_dates/5001/1/16443/INTAV_Programm_final_vers2-2.pdf

1947 Lube, G., Breard, E.C.P., Jons, J., Fullard, L., Dufek, J., Cronin, S.J., and Wang, T.: Generation of air
1948 lubrication within pyroclastic density currents. *Nature Geoscience* 12, 381386, 2019.

1949 Lundqvist, J., Fredriksson, D., and Lundqvist, T.: Minnesord (Obituary) Christer Persson. *Geologiskt Forum*
1950 102, 30–31, 2019 (in Swedish).

1951 MacCracken, M.C. and Volkert, H.: IAMAS: a century of international cooperation in atmospheric sciences.

1952 *History of Geo- and Space Sciences* 10, 119–136, 2019.

1953 Machida, H.: Recent progress in tephra studies in Japan. *The Quaternary Research (Daiyonki-Kenkyu)* 30,

1954 141–149, 1991.

1955 Machida, H.: The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan.

1956 *Global and Planetary Change*, 21, 71–94, 1999.

1957 Machida, H.: Volcanoes and tephra in the Japan area. *Global Environmental Research* 6, 19–28, 2002.

1958 Machida, H. and Arai, F.: The discovery and significance of the very widespread tephra: the Aira-Tn ash.

1959 *Kagaku* 46, 339–347, 1976 (in Japanese).

1960 Machida, H. and Arai, F.: Extensive ash falls in and around the Sea of Japan from large late Quaternary

1961 eruptions. *Journal of Volcanology and Geothermal Research* 18, 151–164, 1983.

1962 Machida, H. and Arai, F., 2003. *Atlas of Tephra in and Around Japan*, revised edition. Tokyo: University of

1963 Tokyo Press, 336 pp., 2003 (in Japanese).

1964 Machida, H. and Lowe, D.J. (editors): *INQUA Commission on Tephrochronology COT Newsletter* 1.

1965 Department of Geography, Tokyo Metropolitan University, Tokyo. 7 pp, 1991.

1966 Machida, H. and Okumura, K.: Quaternary widespread tephra catalog: a compilation of world widespread

1967 tephra database, in: *A Role of Large-scale Explosive Volcanism in Global Environmental Change*,

1968 compiled by Machida, H. Report for Grant-in-Aid for Scientific Research (Co-operative Research A,

1969 Project Number 05302062), 97–122, 1996.

1970 Mahony, S.H., Barnard, N.H., Sparks, R.S.J., and Rougier, J.C.: VOLCORE, a global database of visible

1971 tephra layers sampled by ocean drilling. *Nature Scientific Data* 7, 330 (<https://doi.org/10.1038/s41597-020-00673-1>), 2020.

1972

1973 Marshall, P.: Notes on some volcanic rocks of the North Island of New Zealand. *New Zealand Journal of*

1974 *Science and Technology* 11, 198–202, 1932.

1975 Marshall, P.: Acid rocks of the Taupo-Rotorua volcanic district. *Transactions of the Royal Society of New*

1976 *Zealand* 64, 323–366, 1935.

1977 Marshall, L.R., Maters E., Schmidt, A., Timmreck, C., Robock, A., Toohey, M.: Volcanic effects on

1978 climate: recent advances and future avenues. *Bulletin of Volcanology* 84, article 54, 2022.

1979 Matsu'ura, T., Furusawa, A., and Yanagida, M.: Detection and correlation of widespread cryptotephras in

1980 middle Pleistocene loess in NE Japan using cummingtonite geochemistry. *Journal of Asian Earth Sciences*

1981 60, 49–67, 2012.

1982 Matsu'ura, T., Ikehara, M., and Ueno, T.: Late Quaternary tephrostratigraphy and cryptotephrostratigraphy of

1983 core MD012422: improving marine tephrostratigraphy of the NW Pacific. *Quaternary Science Reviews*

1984 257, 106808, 2021.

1985 Mazei, Y., Sapelko, T., Tsyganov, A.N., Novenko, E., Lapshina, E., Zenkova, I.V., Babeshko, K., Esaulov,

1986 A., Kupeiyanov, D., Zarov, E., Tiunov, A., Mazei, N., Ratcliffe, J., Mauquoi, D., Sloan, T., Lamentowicz,

1987 A., and Qin, L.: A British ecologist and protistologist in Russia: in memoriam Dr. Richard John Payne
1988 (1978–2019). *Studies in History of Biology* 12, 114–126, 2020 (in Russian).

1989 Meara, R.H.H., Thordarson, Th., Pearce, N.J.G., Hayward, C., Larsen, G.: A catalogue of major and trace
1990 element data for Icelandic Holocene silicic tephra layers. *Journal of Quaternary Science* 35, 122–142,
1991 2020.

1992 Menke, V., Kutterolf, S., Sievers, C., Schindlbeck, J.C., Schmiedl, G.: Cryptotephra from Lipari Volcano in
1993 the eastern Gulf of Taranto (Italy) as a time marker for paleoclimatic studies. *Quaternary Research* 89,
1994 520–532, 2018.

1995 Merkt, J., Müller, H., Knabe, W., Müller, P., and Weister, T.: The early Holocene Saksunarvatn tephra found
1996 in lake sediments in NW Germany. *Boreas* 22, 93–100, 1993.

1997 Moar, N.T.: Contributions to the Quaternary history of the New Zealand flora. 4. Pollen diagrams from the
1998 western Ruahine Ranges. *New Zealand Journal of Science* 4, 350–459, 1961.

1999 Momose, K., Kobayashi, K., Minagawa, K., and Machida, M.: Identification of tephra by means of
2000 ferromagnetic minerals in pumice. *Bulletin of the Earthquake Research Institute* 46, 1275–1291, 1968.

2001 Morgan, G.B. and London, D.: Effect of current density on the electron microprobe analysis of alkali
2002 aluminosilicate glasses. *American Mineralogist* 90, 1131–1138, 2005.

2003 Moriwaki, H. and Lowe, D.J. (editors): Intraconference Field Trip Guides. International Field Conference on
2004 Tephrochronology, Volcanism, and Human Activity, Kirishima City, Japan (9–17 May, 2010), INQUA
2005 International Focus Group on Tephrochronology and Volcanism (INTAV), 1–106, 2010.

2006 Moriwaki, H., Suzuki, T., and Lowe, D.J.: In memoriam and dedication – Shinji Nagaoka (1958–2011).
2007 *Quaternary International* 246, 14–16, 2011a.

2008 Moriwaki, H., Suzuki, T., Murata, M., Ikebara, M., Machida, H., Oba, T., and Lowe, D.J.: Sakurajima-
2009 Satsuma (Sz-S) and Noike-Yumugi (N-Ym) tephras: new tephrochronological marker beds for the last
2010 deglaciation, southern Kyushu, Japan. *Quaternary International* 246, 203–212, 2011b.

2011 Nakanishi, R., Ashi, J., and Okumura, S.: A dataset for distribution and characteristics of Holocene pyroclastic
2012 fall deposits along the Pacific coasts in western Hokkaido, Japan. *Data in Brief* 33: 106565, 2020.

2013 Neall, V.E.: Tephrochronology and tephrostratigraphy of western Taranaki (N108–N109), New Zealand. *New
2014 Zealand Journal of Geology and Geophysics* 15, 507–557, 1972.

2015 Neall, V.E., Stewart, R.B., Wallace, R.C., Williams, M.C., and Mew, G.: Mineralogy, stratigraphy, and
2016 provenance of soil coverbeds in the Kumara district, Westland. *New Zealand Journal of Geology and*
2017 *Geophysics* 44, 205–218, 2001.

2018 Neustadt, M.I.: International Union for Quaternary Research (INQUA): Historique des Congrès. INQUA,
2019 Moscow, 97 pp., 1969 (translated into French from Russian by G. Krichevsky and published for the 8th
2020 INQUA Congress in Paris as a Supplement to *Bulletin de l'AFEQ*).

2021 Newnham, R.M., Lowe, D.J., and Alloway, B.V.: Volcanic hazards in Auckland, New Zealand: a preliminary
2022 assessment of the threat posed by central North Island silicic volcanism based on the Quaternary
2023 tephrostratigraphical record. Geological Society, London, Special Publication 161, 27–45, 1999.

2024 Newnham, R.M., Dirks, K.N., and Samaranayake, D.: An investigation into long-distance health impacts of
2025 the 1996 eruption of Mt Ruapehu, New Zealand. *Atmospheric Environment* 44, 1568–1578, 2010.

2026 Newton, A.J., Gittings, B., and Stuart, N.: Designing a scientific database query server using the World Wide
2027 Web: the example of TephraBase, in *Innovations in GIS 4*, edited by Kemp, K., Taylor & Francis, London,
2028 251–266, 1997.

2029 Newton, A.J., Dugmore, A.J., and Gittings, B.M.: TephraBase: tephrochronology and the development of a
2030 centralized European database. *Journal of Quaternary Science* 22, 737–743, 2007.

2031 Noe-Nygaard, A.: Sigurdur Thórarinsson 8 January 1912–8 February 1983. *Dansk Geologisk Forening
2032 Årsskrift* 1983 [Danish Geological Society Yearbook 1983], 103–105, 1984.

2033 Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S.B., Bösken, J., Svirčev, Z., Bačević, N.,
2034 Gavrilov, M.B., and Lehmkuhl, F.: Tracing the influence of Mediterranean climate on southeastern Europe
2035 during the past 350,000 years. *Scientific Reports* 6, 36334, 2016.

2036 Óladóttir, B.A., Larsen, G., and Sigmarsdóttir, O.: Deciphering eruption history and magmatic processes from
2037 tephra in Iceland. *Jökull* 62, 21–38, 2012.

2038 Oldfield, F. (editor): *Past Global Changes (PAGES) Implementation Plan*. IGBP Secretariat, Stockholm,
2039 Report Series 45, 236 pp., 1998.

2040 Paredes-Marino, J., Forte, P., Alois, S., Chan, L.K., Cigala, V., Mueller, S.B., Poret, M., Spanus, A.,
2041 Tomašek, I., and Tournigand, P.-Y.: The lifecycle of volcanic ash: advances and ongoing challenges.
2042 *Bulletin of Volcanology* 84, 51 (<https://doi.org/10.1007/s00445-022-01557-5>), 2022.

2043 Pearce, N.J.G.: Towards a protocol for the trace element analysis of glass from rhyolitic shards in tephra
2044 deposits by laser ablation ICP-MS. *Journal of Quaternary Science*, 29, 627–640, 2014.

2045 Pearce, N.J.G., Westgate, J.A., Perkins, W.T., Eastwood, W.J., and Shane, P.A.R.: The application of laser
2046 ablation ICP-MS to the analysis of volcanic glass shards from tephra deposits: bulk glass and single shard
2047 analysis. *Global and Planetary Change* 21, 151–171, 1999.

2048 Pearce, N.J.G., Pearce, N.J.G., Denton, J.S., Perkins, W.T., Westgate, J.A., and Alloway, B.V.: Correlation
2049 and characterisation of individual glass shards from tephra deposits using trace element laser ablation ICP-
2050 MS analyses: current status and future potential. *Journal of Quaternary Science* 22, 721–736, 2007.

2051 Pearce, N.J., Westgate, J.A., Perkins, W.T., and Wade, S.C.: Trace-element microanalysis by LA-ICP-MS: the
2052 quest for comprehensive chemical characterisation of single, sub-10-µm volcanic glass shards. *Quaternary
2053 International* 246, 57–81, 2011.

2054 Pearce, N.J.G., Abbott, P.M., and Martin-Jones, C.M.: Microbeam methods for the analysis of glass in fine
2055 grained tephra deposits: a SMART perspective on current and future trends. Geological Society, London,
2056 Special Publication 398, 29–46, 2014.

2057 Pearce, N.J.G., Westgate, J.A., Gualda, G.A.R., Gatti, E., and Muhammad, R.F.: Tephra glass chemistry
2058 provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff
2059 eruption, northern Sumatra. *Journal of Quaternary Science* 35, 256–271, 2020.

2060 Persson C.: Försök till tefroönonologisk datering av några svenska torvmossar. *Geologiska Föreningen I*
2061 Stockholm Förhandlingar 88(3), 361–394, doi: 10.1080/11035896609448933, 1966 (in Swedish).

2062 Persson C.: Tephrochronological investigation of peat deposits in Scandinavia and on the Faroe Islands.
2063 Geological Survey of Sweden C 656, 1–34, 1971.

2064 Petrelli, M., Bizzarri, R., Morgavi, D., Baldanza, A., and Perugini, D.: Combining machine learning
2065 techniques, microanalyses and large geochemical datasets for tephrochronological studies in complex
2066 volcanic areas: new age constraints for the Pleistocene magmatism of central Italy. *Quaternary*
2067 *Geochronology* 40, 33–44, 2017.

2068 Pilcher, J. and Hall, V.A.: Towards a tephrochronology for the Holocene of the north of Ireland. *The*
2069 *Holocene* 2, 255–259, 1992.

2070 Pilcher, J. and Hall, V.A.: Tephrochronological studies in northern England. *The Holocene* 6, 100–105, 1996.

2071 Pilcher, J.R., Hall, V.A., and McCormac, F.G.: Dates of Holocene Icelandic volcanic-eruptions from tephra
2072 layers in Irish peats. *The Holocene* 5, 103–110, 1995.

2073 Pillans, B.J.: Chronostratigraphy , in *The Encyclopaedia of Quaternary Science*, 2nd edition, edited by Elias,
2074 S.A., Mock, C.J., Elsevier, Amsterdam, 4, 215–221, 2013.

2075 Platz, T., Cronin, S.J., Smith, I.E.M., Turner, M.B., and Stewart, R.B.: Improving the reliability of
2076 microprobe-based analyses of andesitic glasses for tephra correlation. *The Holocene* 17, 573–583, 2007.

2077 Plunkett, G., Pilcher, J., Baillie, M., McClung, L.C.: Obituary – Emerita Professor Valerie Anne Hall BSc
2078 PhD FSA FHEA (1946-2016). *Quaternary Geochronology* 40, 8–11, 2017.

2079 Pouget, S., Bursik, M.I., and Rogova, G.: Tephra redeposition and mixing in a Lateglacial hillside basin
2080 determined by fusion of clustering analyses of glass-shard geochemistry. *Journal of Quaternary Science* 29,
2081 789–802, 2014.

2082 Ponomareva, V., Portnyagin, M., and Davies, S.: Tephra without borders: far-reaching clues into past
2083 explosive eruptions. *Frontiers in Earth Sciences* 3: article 83, doi: org/10.3389/feart.2015.00083, 2015.

2084 Portnyagin, M. V., Ponomareva, V.V., Zelenin, E.A., Bazanova, L.I., Pevzner, M.M., Plechova, A.A.,
2085 Rogozin, A.N., and Garbe-Schönberg, D.: TephraKam: geochemical database of glass compositions in
2086 tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific). *Earth System Science*
2087 *Data*, 12, 469–486, 2020.

2088 Porter, S.: INQUA and Quaternary science at the Millennium: a personal retrospective. *Quaternary*
2089 *International* 62, 111–117, 1999.

2090 Prata, F. and Rose, B.: Volcanic ash hazards to aviation, in: *The Encyclopaedia of Volcanoes*, 2nd edition,
2091 edited by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San Diego,
2092 911–934, 2015.

2093 Preece, S.J., Westgate, J.A., Froese, D.G., Pearce, N.J.G., Perkins, W.T.: A catalogue of late Cenozoic tephra
2094 beds in the Klondike goldfields and adjacent areas, Yukon Territory. *Canadian Journal of Earth*
2095 *Sciences* 48, 1386–1418, 2011.

2096 Riede, F. and Thastrup, M.D.: Tephra, tephrochronology and archaeology – a (re-)view from northern Europe.
2097 *Heritage Science* 1 (15), 1–17, 2013.

2098 Riede, F., Bazely, O., Newton, A.J., and Lane, C.S.: A Laacher See-eruption supplement to TephraBase:
2099 investigating distal tephra fallout dynamics. *Quaternary International* 246, 134–144, 2011.

2100 Robertson, S.M., Mew, G.: The presence of volcanic glass in soils on the West Coast, South Island, New
2101 Zealand. *New Zealand Journal of Geology and Geophysics* 25, 503–507, 1982.

2102 Robock, A.: Climatic impacts of volcanic eruptions, in: *The Encyclopaedia of Volcanoes*, 2nd edition, edited
2103 by Sigurdsson, H., Houghton, B.F., McNutt, S., Rymer, H., and Stix, J., Elsevier, San Diego, 935–942,
2104 2015.

2105 Romero, J.E., Alloway, B.V., Gutiérrez, R., Bertin, D., Castruccio, A., Villarosa, G., Schipper, C.I., and 10
2106 others: centennial-scale eruptive diversity at Volcán Calbuco (41.3°S; Northwest Patagonia) deduced from
2107 historic tephra cover-bed and dendrochronologic archives. *Journal of Volcanology and Geothermal Research*
2108 417, 107281, 2021.

2109 Ross, C.S. and Smith, R.L.: Ash-flow tuffs: their origin, geologic relations, and identification. A. study of the
2110 emplacement, by flowage, of hot gas-emitting volcanic ash; its induration by welding and crystallization,
2111 and criteria for recognizing the resulting rock. *U.S. Geological Survey Professional Paper* 366, 1–80, 1961.

2112 Royal Geographical Society: Obituary Sigurdur Thórarinsson, 1912–1983. *The Geographical Journal* 149,
2113 405–406, 1983.

2114 Ruddiman, W.F. and McIntyre, A.: Time-transgressive deglacial retreat of polar waters from the North
2115 Atlantic. *Quaternary Research* 3, 117–130, 1973.

2116 Saito, Y., Okumura, K., Suzuki, T., Yokoyama, Y., and Izuho, M. (editors): *Japanese Quaternary studies.*
2117 *Quaternary International* 397, 1–588, 2016.

2118 Sarna-Wojcicki, A.M.: Tephrochronology, in: *Quaternary Geochronology: Methods and Applications*, edited
2119 by Noller, J.S., Sowers, J.M., and Lettis, W.R., AGU Reference Shelf, 4, American Geophysical Union,
2120 Washington, DC, 357–377, 2000.

2121 Schindlbeck, J.C., Kutterolf, S., Straub, S.M., Andrews G.D.M., Wang, K.-L., Mlneck-Vautravers, M.J.: One
2122 million years tephra record at IODP sites U1436 and U1437: insights into explosive volcanism from the
2123 Japan and Izu arcs. *Island Arc* 27, e12244, 2018.

2124 Schmid, R.: Descriptive nomenclature and classification of pyroclastic deposits and fragments:
2125 recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geology* 9, 41–43,
2126 1981.

2127 Schmincke, H.-U.: IAVCEI: who we are and what we do. *Bulletin of Volcanology* 51, 229–242, 1989.

2128 Scott, J.M.: Introduction to the special issue on volcanism in Zealandia and the SW Pacific. New Zealand
2129 Journal of Geology and Geophysics 64 (2/3), 147–152, 2021.

2130 Self, S. and Sparks, R.S.J.: Dedication, in: Tephra Studies, edited by Self, S. and Sparks, R.S.J., D. Reidel,
2131 Dordrecht, xi–xii, 1981a.

2132 Self, S. and Sparks, R.S.J.: Preface, in: Tephra Studies, edited by Self, S. and Sparks, R.S.J., D. Reidel,
2133 Dordrecht, xiii-xiv, 1981b.

2134 Self, S. and Sparks, R.S.J. (editors): Tephra Studies. D. Reidel, Dordrecht. 481 pp, 1981c.

2135 Self, S. and Sparks, R.S.J.: George Patrick Leonard Walker 2 March 1926–17 January 2005. Biographical
2136 Memoirs of Fellows of the Royal Society 52, 423–436, 2006.

2137 Shane, P.A.R.: Tephrochronology: a New Zealand case study. Earth-science Reviews 49, 223–259, 2000.

2138 Sheridan, M.F.: Emplacement of pyroclastic flows: are review. Geological Society of America Special Paper
2139 180, 125–136, 1979.

2140 Shulmeister, J., Turney, C.S.M., Fink, D., Newnham, R.M., Alloway, B.V.: Developing an event stratigraphy
2141 for Australasian climate change. EOS 87 (29), 283, 2006.

2142 Slate, J.L. and Knott, J.R.: Tephrochronology: an appreciation of the contributions of Andrei Sarna-Wojcicki.
2143 Quaternary International 178, 10, 2008.

2144 Smalley, I.J.: Volcanic ash southern style. Nature 286, 841, 1980.

2145 Smalley, I.J.: Notes for a history of INQUA – the International Union for Quaternary Research. Giotto Loess
2146 Research Group, Nottingham Trent University, Nottingham, U.K.,
2147 https://www.researchgate.net/publication/299976916_Notes_for_a_History_of_INQUA, 2011.

2148 Smalley, I. and O’Hara-Dhand, K.: The Western Pacific Working Group of the INQUA Loess Commission:
2149 expansion from central Europe. Central European Journal of Geosciences 2, 9–14, 2010.

2150 Smith, I.E.M. (editor): Late Cenozoic volcanism in New Zealand. Royal Society of New Zealand Bulletin 23,
2151 371 pp., 1986.

2152 Smith, D.G.W. and Westgate, J.A.: Electron probe technique for characterising pyroclastic deposits. Earth and
2153 Planetary Science Letters 5, 313–319, 1969.

2154 Smith, V.C., Shane, P.A.R., and Nairn, I.A.: Trends in rhyolite geochemistry, mineralogy, and magma storage
2155 during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand.
2156 Journal of Volcanology and Geothermal Research 148, 372–406, 2005.

2157 Smith, V.C., Staff, R.A., Blockley, S.P.E., Bronk Ramsey, C., Nakagawa, T., Mark, D.F., Tekemura, K.,
2158 Danhara, T., and Suigetsu 2006 Project Members: Identification and correlation of visible tephra in the
2159 Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east
2160 Asian/west Pacific palaeoclimatic records across the last 150 ka. Quaternary Science Reviews 67, 121–
2161 137, 2013.

2162 Sparks, R.S.J. and Walker, G.P.L: The significance of vitric-enriched air-fall ashes associated with crystal-rich
2163 ignimbrites. Journal of Volcanology and Geothermal Research 2, 329-341, 1977.

2164 Sparks, R.S.J., Self, S., Walker, G.P.L.: Products of ignimbrite eruptions. *Geology* 1, 115–118, 1973.

2165 Steen-McIntyre, V.: INQUA tephrochronology bibliography – a call for references. *EOS* 52 (7), 520, 1971.

2166 Steinhörsson, S.: Memorial to Sigurdur Thórarinsson, 1912–1983. *Geological Society of America Memorials* 15, 1–6, 1985.

2168 Steinhörsson, S.: Sigurdur Thórarinsson (1912–1983). *Jökull* 62, 3–20, 2012.

2169 Stewart, R.B., Neall, V.E., Pollok, J.A., Syers, J.K.: Parent material stratigraphy of an Egmont loam profile, 2170 Taranaki, New Zealand. *Australian Journal of Soil Research* 15, 177–190, 1977.

2171 Stewart, R.B., Neall, V.E., and Syers, J.K.: Occurrence and source of quartz in six basaltic soils from 2172 Northland, New Zealand. *Australian Journal of Soil Research* 22, 365–377, 1984.

2173 Stork-Bullock Mortuary: Donal Ray Mullineaux: February 16, 1925–January 23, 2021. Stork- 2174 <https://www.sbmortuary.com/obituary/Donal-Mullineaux>, 2021.

2175 Suzuki, T.: Chemical analysis of volcanic glass by energy dispersive X-ray spectrometry with Jeol JED-2001 2176 and JSM-5200: analytical procedures and application. *Geographical Reports of Tokyo Metropolitan* 2177 University 31, 27–36, 1996.

2178 Suzuki, T.: Tephra studies on Quaternary explosive eruptions in the Japanese islands. *The Quaternary* 2179 *Research (Daiyonki-Kenkyu)* 46, 283–292, 2007.

2180 Suzuki, T. and Nakamura, Y.: Report on the COT-J symposium [13–15 March, 2005] entitled ‘Reconstruction 2181 of development of Kanto tectonic basin: tephrochronology, underground geology and 2182 tectonics’. *Quaternary Research (QR) Newsletter* 12 (3), 19–21, 2005 (in Japanese).

2183 Suzuki, T., Moriwaki, H., and Lowe, D.J.: Hiroshi Machida – respected tephrochronologist, teacher, leader. 2184 *Quaternary International* 246, 6–13, 2011.

2185 Suzuki, T., Kasahara, A., Nishizawa, F., Saito, H.: Chemical characterization of volcanic glass shards by 2186 energy dispersive X-ray spectrometry with EDAX Genesis APEX2 and JEOL JSM-6390. *Geographical* 2187 *Reports of Tokyo Metropolitan University* 49, 1–12, 2014.

2188 Swindles, G.T., Lawson, I.T., Savov, I.P., Connor, C.B., and Plunkett, G.: A 7000-yr perspective on volcanic 2189 ash clouds affecting Northern Europe. *Geology* 39, 887–890, 2011.

2190 Swindles, G.T., Outram, Z., Batt, C.M., Hamilton, W.D., Church, M.J., Bond, J.M., Watson, E.J., Cook, G.T., 2191 Sim, T.G., Newton, A.J., Dugmore, A.J.: Vikings, peat formation and settlement abandonment: a 2192 multimethod chronological approach from Shetland. *Quaternary Science Reviews* 210, 211–225, 2019.

2193 Tatsumi, Y. and Suzuki-Kamata, K.: Cause and risk of catastrophic eruptions in the Japanese archipelago. 2194 *Proceedings of the Japan Academy, Series B, Physical and Biological Sciences* 90, 347–352, 2014.

2195 Thomas, D. and Lamothe, M.: Dr Stephen Stokes, 1964–2014, 2196 <https://www.geog.ox.ac.uk/news/articles/140520-stokes.html>, 2014.

2197 Thompson, P.I.J., Dugmore, A.J., Newton, A.J., Streeter, R.J., and Cutler, N.A.: Variations in tephra 2198 stratigraphy created by small-scale surface features in sub-polar landscapes. *Boreas*, 2199 <https://doi.org/10.1111/bor.12557>, 2021.

2200 Thórarinsson, S.: Tefrokronologiska studier på Island [Tephrochronological studies in Iceland]. *Geografiska
2201 Annaler* 26, 1–217, 1944 (in Icelandic with English summary pp. 204–215).

2202 Thórarinsson, S.: The tephra-fall from Hekla on March 29th, 1947, in: *The Eruption of Hekla 1947–1948*,
2203 edited by Einarsson, T., Kjartansson, G., and Thórarinsson, S., The Icelandic Science Association and the
2204 Museum of Natural History, Reykjavík, 2(3), 1–68, 1954.

2205 Thórarinsson, S.: A message sent from Dr Thórarinsson [in 1961], pp. 784–785 in Kobayashi, K. *Report on
2206 the VIth International Congress on Quaternary*, Warsaw 1, 781–789, 1965.

2207 Thórarinsson, S.: Ignimbrit í Thorsmörk [Ignimbrite in Thorsmörk]. *Náttúrufræðingurinn* 39, 139–155, 1969
2208 (in Icelandic).

2209 Thórarinsson, S.: Tephrochronology in medieval Iceland, in: *Scientific Methods in Medieval Archaeology*,
2210 edited by Berger, R., University of California Press, Berkley, 295–328, 1970.

2211 Thórarinsson, S.: The terms *Tephra* and *Tephrochronology*, in “*The World Bibliography and Index of
2212 Quaternary Tephrochronology*” edited by Westgate, J.A. and Gold, C.M. University of Alberta, Alberta,
2213 Canada, xvii–xviii, 1974.

2214 Thórarinsson, S.: On the damage caused by volcanic eruptions with special reference to tephra and gases, in:
2215 *Volcanic Activity and Human Ecology*, edited by Sheets, P.D. and Grayson, D.K., Elsevier, 125–159,
2216 1979.

2217 Thórarinsson, S.: Tephra studies and tephrochronology: a historical review with special reference to Iceland,
2218 in: *Tephra Studies*, edited by Self, S. and Sparks, R.S.J., D. Reidel, Dordrecht, 1–12, 1981.

2219 Thordarson, T. and Larsen, G.: Volcanism in Iceland in historical times: volcano types, eruption styles and
2220 eruptive history. *Journal of Geodynamics* 43, 118–152, 2007.

2221 Thordarson, T. and Höskuldsson, Á.: Postglacial volcanism in Iceland. *Jökull* 58, 197–228, 2008.

2222 Tomlinson, E.L., Smith, V.C., Albert, P.G., Aydar, E., Civetta, L., Cioni, R., Çubukçu, E., Gertisser, R., Isaia,
2223 R., Menzies, M.A., Orsi, G., Rosi, M., and Zanchetta, G.: The major and trace element glass compositions
2224 of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around
2225 Europe. *Quaternary Science Reviews* 118, 48–66, 2015.

2226 Tonkin, P.J. and Neall, P.J.: Obituary – A memorial to Colin George Vucetich BAgriSc (Lincoln), born 6th
2227 October 1918–died 25 April 2007. *New Zealand Soil News* 55 (3), 96–101, 2007.

2228 Turney, C.S.M.: Extraction of rhyolitic ash from minerogenic lake sediments. *Journal of Paleolimnology* 19,
2229 199–206, 1998.

2230 Turney, C.S.M. and Lowe, J.J.: Tephrochronology, in: *Tracking Environmental Change Using Lake
2231 Sediments*, Vol. 1, *Basin Analysis, Coring, and Chronological Techniques*, edited by Last, W.M. and
2232 Smol, J.P., Kluwer, Dordrecht, pp. 451–472, 2001.

2233 Turney, C.S.M., Davies, S.M., and Alloway, B.V.: Developing regional tephrochronological frameworks for
2234 testing hypotheses of synchronous climate change. *PAGES News* 13(3), 16–17, 2004a.

2235 Turney, C.S.M., Lowe, J.J., Davies, S.M., Hall, V.A., Lowe, D.J., Wastegård, S., Hoek, W.Z., and Alloway,
2236 B.V.: Tephrochronology of Last Termination sequences in Europe: a protocol for improved analytical
2237 precision and robust correlation procedures (SCOTAV–INTIMATE proposal). *Journal of Quaternary*
2238 *Science* 19, 111–120, 2004b.

2239 Uslular, G., Kiyikçi, F., Karaarslan, E., and Kuşcu, G.C.: Application of machine-learning algorithms for
2240 tephrochronology: a case study of Plio-Quaternary volcanic fields in the South Aegean Active Volcanic
2241 Arc. *Earth Science Informatics*, <https://doi.org/10.1007/s12145-022-00797-5>

2242 van den Bogaard, C. and Schmincke, H.-U.: Linking the North Atlantic to central Europe: a high resolution
2243 tephrochronological record from northern Germany. *Journal of Quaternary Science* 17, 3–20, 2002.

2244 van den Bogaard, C., Dörfler, W., Sandgren, P., and Schmincke, H.-U.: Correlating the Holocene records:
2245 Icelandic tephra found in Schleswig-Holstein (northern Germany). *Naturwissenschaften* 81, 554–556,
2246 1994.

2247 van der Bilt, W.G.M., Lane, C.S., and Bakke, J.: Ultra-distal Kamchatkan ash on Arctic Svalbard: towards
2248 hemispheric cryptotephra correlation. *Quaternary Science Reviews* 164, 230–235, 2017.

2249 Van Hazinga, C., Mana, S., and DiMaggio, E.: Availability and accessibility of east African tephra
2250 geochemical data compiled in EARThD, in: Geological Society of America Abstracts with Programs, Vol.
2251 53 (6), 2021.

2252 Vucetich, C.G.: Obituary – Dr. William Alexander [Alan] Pullar, BSc, AOSM, DSc, FNZIAS. *New Zealand*
2253 *Soil News* 30, 186–188, 1982.

2254 Waitt, R.B. and Begét, J.E.: Volcanic processes and geology of Augustine Volcano, Alaska. *U.S. Geological*
2255 *Survey Professional Paper* 1762, 1–78, 2009.

2256 Wallace, K.L, Bursik, M.I., Goring, S.J., Kodama, S., Kuehn, S.C., Kurbatov, A., Lehnert, K., Profeta,
2257 Ramdeen, S., Wallace, K., and Walker, J.D.: Improving discoverability of tephra data through
2258 development of data upload templates and collection tools using community-driven best practices
2259 recommendations. *Goldschmidt Meeting*, July 4-9,
2260 <https://2021.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/3629>, 2021.

2261 Wallace, K., Bursik, M., Kuehn, S., Kurbatov, A., Abbott, P., Bonadonna, C., Cashman, K., Davies, S.,
2262 Jensen, B., Lane, C., Plunkett, G., Smith, V., Tomlinson, E., Thordarsson, T., and Walker, J.D.:
2263 Community established best practice recommendations for tephra studies – from collection through
2264 analysis. *Nature Scientific Data* [manuscript SDATA-21-00892: submitted 5-August-2021], in review.

2265 Wastegård, S.: Late Quaternary tephrochronology of Sweden: a review. *Quaternary International* 130, 49–62,
2266 2005.

2267 Wastegård, S. and Boyle, J.: Distal tephrochronology of NW Europe: the view from Sweden. *Jökull* 62,
2268 73–80, 2012.

2269 Wastegård, S. and Davies, S.M.: An overview of distal tephrochronology in northern Europe during the last
2270 1000 years. *Journal of Quaternary Science* 25, 500–512, 2009.

2271 Westgate, J.A.: Preface and acknowledgements, in: World Bibliography and Index of Quaternary
2272 Tephrochronology, compiled by Westgate, J.A. and Gold, C.M., University of Alberta, Edmonton,
2273 UNESCO and INQUA, iii–iv, 1974.

2274 Westgate, J.A.: Isothermal plateau fission-track ages of hydrated glass shards from silicic tephra beds. *Earth*
2275 and *Planetary Science Letters* 95, 226–234, 1989.

2276 Westgate, J.A. and Fulton, R.J.: Tephrostratigraphy of Olympia interglacial sediments in south-central British
2277 Columbia, Canada. *Canadian Journal of Earth Sciences* 12, 489–502, 1975.

2278 Westgate, J.A. and Gold, C.M. (compilers): World Bibliography and Index of Quaternary Tephrochronology.
2279 University of Alberta, Edmonton, UNESCO and INQUA, 528 pp, 1974.

2280 Westgate, J.A., Gorton, M.P.: Correlation techniques in tephra studies, in: *Tephra Studies*, edited by Self, S.
2281 and Sparks, R.S.J., D. Reidel, Dordrecht, 73–94, 1981.

2282 Westgate, J.A., Walter, R., and Naeser, N.: Preface [to ‘Tephrochronology: stratigraphic applications of
2283 tephra’], *Quaternary International* 13-14, 5, 1992a.

2284 Westgate, J.A., Walter, R., and Naeser, N. (editors): Tephrochronology: stratigraphic applications of tephra.
2285 *Quaternary International* 13-14, 1–203, 1992b.

2286 Westgate, J.A., Perkins, W.T., Fuge, R., Pearce, N.J.G., and Wintle, A.G.: Trace-element analysis of volcanic
2287 glass shards by laser ablation inductively coupled plasma mass spectrometry: application to
2288 tephrochronological studies. *Applied Geochemistry* 9, 323–335, 1994.

2289 Wilson, C.J.N.: The Taupo eruption, New Zealand II. The Taupo ignimbrite. *Philosophical Transactions of the*
2290 *Royal Society, London*, A314, 229–310, 1985.

2291 Wilson, C.J.N.: Post-conference Tour Day 1: Hamilton-Tokaanu, in: *Intra-conference and Post-conference*
2292 *Tour Guides, International Inter-INQUA Field Conference on Tephrochronology, Loess, and*
2293 *Paleopedology*, edited by Lowe, D.J., University of Waikato, Hamilton, New Zealand, 74–100, 1994.

2294 Wilson, C.J.N.: George Walker 1926–2005. *Geological Society of New Zealand Newsletter* 136, 47–50, 2005.

2295 WoldeGabriel, G., Hart, W.K., Heiken, G.: Innovative tephra studies in the East African Rift System. *EOS* 86
2296 (27), 255, 2005.

2297 Wright, J.V., Smith, A.L., and Self, S.: A terminology for pyroclastic deposits, in: *Tephra Studies*, edited by
2298 Self, S. and Sparks, R.S.J., D. Reidel, Dordrecht, 457–463, 1981.

2299 Wulf, S., Hardiman, M.J., Staff, R.A., Koutsodendris, A., Appelt, O., Blockley, S.P.E., Lowe, J.J., Manning,
2300 C.J., Ottolini, L., Schmitt, A.K., Smith, V.C., Tomlinson, E.L., Vakhrameeva, P., Knipping, M., Kotthoff,
2301 U., Milner, A.M., Müller, U.C., Christanis, K., Kalaitzidis, S., Tzedakis, P.C., Schmiedl, G., and Pross, J.:
2302 The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: towards a detailed
2303 tephrostratigraphic framework for the eastern Mediterranean region. *Quaternary Science Reviews* 186,
2304 236–262, 2018.

2305 **Appendix A**
 2306
 2307 Summary of some of the activities (including INQUA/IAVCEI sessions/symposia, regional workshops, etc)
 2308 associated with COT additional to the nine specialist tephra conferences listed in Table 3
 2309
 2310

Activities 1965–1999	Activities 2000–2022
<i>1965 INQUA Congress in Boulder (tephra session/s; field trips in Pacific Northwest, central-south Alaska) (Neustadt, 1969)</i>	<i>2000 4th International INTIMATE Workshop, INQUA Palaeoclimate Commission and COTAV, Kangerlussuaq, Greenland (e.g., Turney et al., 2004b)</i>
<i>1969 INQUA Congress in Paris (tephra session/s; field trip in Massif Central) (Neustadt, 1969)</i>	<i>2003 INQUA Congress in Reno (tephra session/s; launch of Australasian INTIMATE Project, e.g., Shulmeister et al., 2006)</i>
<i>1973 INQUA Congress in Christchurch (tephra session/s; field trips in western North Island, central North Island) (Fairbridge, 1974)</i>	<i>2005 NSF Revealing Hominid Origins Initiative, International Tephra Working Group Workshop, Santa Fe, New Mexico (WoldeGabriel et al., 2005)</i>
<i>1977 INQUA Congress in Birmingham (tephra session/s)</i>	<i>2007 INQUA Congress in Cairns (tephra sessions; field trip in Atherton Tablelands)</i>
<i>1986 IAVCEI International Volcanological Congress in Auckland-Hamilton-Rotorua (sessions on explosive volcanism, tephrochronology; field trips in North Island, e.g., Houghton and Wilson, 1986)</i>	<i>2011 INQUA Congress in Bern (tephra sessions)</i>
<i>1987 New Zealand conference, Western Pacific Working Group of INQUA Loess Commission (field trip including North Island, e.g., Smalley and O’Hara-Dhand, 2010)</i>	<i>2012 Tephra and Archaeology – Chronological, ecological and cultural dimensions symposium, Annual Meeting of European Association of Archaeologists, Helsinki</i>
<i>1990, 1992, 1994 Biennial UK Tephra Meetings in Edinburgh (1990), Belfast (1992), and Cheltenham (1994) (e.g., Hunt, 1999a)</i>	<i>2014 Tephra-2014 ‘Maximising the potential of tephra for multidisciplinary science’, Portland, Oregon (https://www.tephrochronology.org/intav/Tephra2014/)</i>
<i>1991 INQUA Congress in Beijing (tephra session/s)</i>	<i>2015 INQUA Congress in Nagoya (tephra sessions; numerous field trips involving tephras)</i>
<i>1992 IGC Tephra and volcanological meeting, Mt Tateyama, Japan</i>	<i>2017 Tephra-2017 ‘Best practices in tephra collection, analysis, and reporting: leading toward better tephra databases’, IAVCEI Scientific Assembly in Portland, Oregon (https://www.tephrochronology.org/intav/Tephra2017/)</i>
<i>1995 INQUA Congress in Berlin (tephra session/s; field trip in Eifel Volcanic Field)</i>	<i>2019 INQUA Congress in Dublin (tephra sessions) (see Sect. 6) and Tephra-19 ‘Tephra standardization writing workshop’ (https://www.tephrochronology.org/intav/Tephra2019/)</i>
<i>1995 ‘Volcanoes in the Quaternary’ meeting, London, of the Volcanic Studies Group of the Geological Society and the QRA, UK (Firth, 1999; Firth and McGuire, 1999).</i>	<i>2021 American Geophysical Union AGU21 Fall Meeting (tephra and volcanic processes session)</i>
<i>1999 INQUA Congress in Durban (tephra session/s; formalising link between S/COTAV and INTIMATE Project; e.g., Turney et al., 2004a)</i>	<i>2022 ‘Best practices: tephra fusion webinars’ (https://tephrochronology.org/cot/Tephra2022/#).</i>

2311
 2312
 2313
 2314