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Abstract. A multitude of the ancient places given by Ptolemy in hisGeography(∼150 AD) are so far un-
known. One of the main problems of their identification are the errors of the given ancient coordinates. The
different kinds of errors are illustrated by examples. A new geodetic-statistical analysis method is described,
by which groups of places with homogeneous systematic errors and places with gross errors can be deter-
mined. Based on a transformation function describing the systematic errors, presumable modern coordinates
of unknown places can be computed. That, in conjunction with further information, can make possible their
identification. A test of the analysis method is carried out on a complex simulated example and shows its
practicability. The analysis method has been applied within an interdisciplinary research project on Ptolemy’s
Geography. Further developments of the method are imaginable to make it accessible for related data diagnos-
tics.

1 Introduction

The development of information technology has offered new
possibilities for the history of geography and cartography,
which have found their way into scientific investigations
in the last decades (e.g.Beineke, 2001; Nieder̈ost, 2005;
Kleineberg et al., 2010). In this context, the fields of in-
terest are especially the methods of historical measurement
and cartography including their accuracy and defects as well
as the interpretation of historical information specifying the
position of unknown historical places.

In the present work an analysis method is described, which
has been developed and applied to investigate the geographic
coordinates in Claudius Ptolemaios’ (Ptolemy)Geographike
Hyphegesis(Geography, ∼150 AD), one of the most impor-
tant ancient scientific works. In addition to a theoretical part
on the cartographic methods of mapping the world, theGeog-
raphycontains a catalogue of locations (Books II–VII) with
geographic coordinates of over 6300 ancient places (towns,
settlements, rivers, mountains, border points, and others)
covering the Ecumene, the then inhabited world known to
the Greeks and Romans. A multitude of them have not been
identified to date. Key to the modern counterparts are the an-

cient coordinates; however, due to their errors, their direct us-
age is not possible. Further, the question of the identification
is hindered by the fact that the originalGeographydoes not
exist any more; it has been handed down by Greek medieval
manuscripts, which show differences. The manuscripts are
presumably based on two recensions,Ω andΞ, which were
revised and published byStückelberger and Graßhoff (2006).

So far there is a lack of an appropriate computational
method, by which the errors (distortions) of the ancient po-
sitions can be analyzed and rectified. Rare efforts in this di-
rection are: For regions of Books II and IIICuntz (1923)
compares the distances between the Ptolemaic places, de-
rived from their coordinates, with distances of itineraries.
Strang(1997) explains the distortions ofHibernia (II.2) and
Albion (II.3) by scaling errors and partly by rotations.Tsor-
lini and Livieratos(2007) andTsorlini (2009) work onHis-
pania (III.4–6), Southeast Europe (III.11–15), and Asia Mi-
nor (V.2) by computer based visualization methods for error
diagnostics and use for a rectification a polynomial transfor-
mation function.

In recent years an interdisciplinary project group at the TU
Berlin has worked on the Ptolemaic data with the aim to iden-
tify unknown Ptolemaic places on the basis of their ancient
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100 C. Marx: Rectification of the ancient geographic coordinates in Ptolemy’s Geographike Hyphegesis

coordinates. Due to the errors and inaccuracy of the coordi-
nates, further information is consulted for the identification,
that is topographic and historical information, archaeological
sites, other ancient texts, and toponymy. The findings of the
project are not the last word on the subject; in fact, specialists
such as historians and archaeologists are asked to confirm or
disprove them.

Concerning the mathematical questions of the project, the
problems and aims are to determine systematic distortions,
gross errors (scribal errors of the manuscripts), and the lo-
cal accuracy of the ancient data as well as incorrect mod-
ern identifications and modern coordinates for unidentified
ancient places. For this purpose a geodetic-statistical anal-
ysis method was developed and implemented in software.
The present work gives a detailed representation of the ac-
tual analysis method, which is described only briefly in
Kleineberg et al.(2010, 2012) so far. Further, the errors of the
Ptolemaic coordinates are illustrated and a simulated exam-
ple is given, by which the functioning of the analysis method
is demonstrated.

2 The errors of the Ptolemaic coordinates

For the places in the catalogue of locations Ptolemy gives the
geographic longitudeΛ and latitudeΦ. The difference be-
tween the Ptolemaic and the modern geographic coordinate
system is the zero meridian. Ptolemy locates the zero merid-
ian at the “Blest Islands” (IV.6.34). The modern counter-
part of that isles is disputed; two possibilities come into con-
sideration, the Canaries (e.g.Tsorlini and Livieratos, 2007;
Stückelberger and Mittenhuber, 2009, p. 240) as well as
the Cape Verde Islands (e.g.Reichert, 2003; Rawlins, 2008,
p. 573). Regardless of which zero meridian is taken into ac-
count, there remain large deviations between the converted
ancient and the modern longitudes. Also, ancient and mod-
ern latitudes often differ considerably. Regarding the iden-
tification of places, it is of interest whether the coordinate
differences contain systematic components. If so, they can
be described by a mathematical function, and the positions
of unidentified places can be rectified.

To illustrate the occurring deviations between Ptolemaic
and modern coordinates, exemplarily 46 places inIllyricum
(II.16; situated between the Adriatic and the Dinarides) are
considered, which are certainly identified (seeKleineberg
et al., 2012, pp. 189). The following computations are based
on theΩ-recension. The differences between modern and
Ptolemaic longitudes amount to 23◦ to 29◦. Thus, for this
example the Cape Verde Islands are assumed to be the lo-
cation of the zero meridian, and the ancient longitudes were
converted byΛ′ =Λ+λSA, whereλSA=−25◦10′ is the mod-
ern longitude of Santa Antão, the most western island of
the Cape Verde Islands. The differences∆λ = λ−Λ′ and
∆φ = φ−Φ with respect to the modern longitudeλ and lat-
itudeφ were computed. The difference vectors (∆λ∆φ)> are

Figure 1. Illyricum: residual plot after a conversionΛ′ =Λ+λSA

in longitude withλSA=−25◦10′ (point: (Λ′,Φ), arrowhead: (λ,φ)).

shown in Fig.1. They have varying directions and often mag-
nitudes of 2◦ to 3◦ in longitude and1

2
◦

to 1◦ in latitude. How-
ever, there are also vectors which are similar to each other.
That indicates systematic errors (distortions).

A better fit between ancient and modern coordinates can
be obtained by a transformation of coordinates, which ab-
sorbs the distortions of the ancient coordinates. In general,
the transformation function isΛ = f (u,λ,φ), Φ = g(u,λ,φ),
whereu is the vector of the distortion parametersu j . Us-
ing the given places ofIllyricum, a computation ofu was
performed by an adjustment (see Sect.3) exemplarily for a
scaled and shifted transformation

Λ= f (u,λ)=mλλ+Λ0 , Φ=g(u,φ)=mφφ+Φ0 , (1)

wheremλ andmφ are scales andΛ0 andΦ0 shifts. The pa-
rameters of the inverse transformation with respect to Eq. (1)
are obtained by the inversions

mΛ =1/mλ , λ0=−Λ0/mλ ,
mΦ =1/mφ , φ0=−Φ0/mφ .

(2)

Then, the approximately rectified ancient coordinates are

λ̄=mΛΛ+λ0 , φ̄=mΦΦ+φ0 . (3)

The remaining errors of this transformation are the residuals
∆λ = λ− λ̄ and∆φ = φ− φ̄. The adjustment ofu was car-
ried out using all 46 places. The residual vectors (∆λ∆φ)>

are plotted in Fig.2. They have magnitudes comparable to
the vectors in Fig.1, because the determined transformation
function is not well fitting.

In Fig. 2 similar residual vectors in local groups reveal
shifts of groups of places against each other. The cause
of shifts can be reference places, which the localization
(by measurement or calculation) of neighbouring places was
based on. (Concerning Ptolemy’s usage of itineraries, also
Cuntz (1923, pp. 112) assumes reference places inGallia,
Italia, andPannonia Inferior.) When the relative positions
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C. Marx: Rectification of the ancient geographic coordinates in Ptolemy’s Geographike Hyphegesis 101

Figure 2. Illyricum: residual plot after an adjustment of scale and
shift (point: (λ̄,φ̄), arrowhead: (λ,φ)).

of the reference places were inaccurate, the errors were trans-
ferred to the associated places.

Local shifts are characteristic for the places in theGeogra-
phy. Cuntz(1923, p. 114, 116) mentions shifts inItalia and
Gallia; Strang(1997) detects shifts inHibernia andAlbion.
Figures3 and4 show further residual plots based on certain
identifications (Kleineberg et al., 2012, pp. 59, 75, 132, 142)
in Gallia (parts II.7,8) andHispania(parts II.4,5), which re-
veal local shifts also in these regions.

In addition to the shifts, scalings can be assumed, which
appear more wide-ranging. Reasons for scalings can be
Ptolemy’s overestimation of the longitudinal dimension of
the Ecumene (180◦ to the most eastern place in China instead
of about 130◦) as well as differences between ancient mea-
surement units (different types of stades), which were unin-
tentionally not considered. (Due to the interactions of differ-
ent influences, the scalings of the longitudes and latitudes are
possibly not entirely identical.)

The systematic scalings and shifts can be described by
Eq. (1). Groups of places with homogenous scales and shifts
(transformation units) and their distortion parameters can be
determined by means of geodetic-statistical methods (see be-
low). Subsequently, the coordinates of so far unidentified
ancient places can be rectified as an important step towards
their identification.

Residual vectors in Fig.2, which are similar to each other,
have an apparently random component in addition to the
common systematic component. Data used by Ptolemy, that
is measurement data, data derived from measurements, and
information from travel reports (itineraries), necessarily had
random errors, which propagated to the final coordinates.
Also the combination of data by Ptolemy led to random adul-
terations. For example, Ptolemy reduced given distances
along routes, which were not straight but curvilinear, by a
unitary factor (Berggren and Jones, 2000, p. 17), whereby
the real distances were enlarged or shortened.

Figure 3. Gallia AquitaniaandGallia Lugdunensis: residual plot
after an adjustment of scale and shift (point: (λ̄,φ̄), arrowhead:
(λ,φ)).

The random errors are closely connected with the physi-
cal resolution of the coordinate values. The coordinates are
given in degree and fractions of degree. Among the occur-
ring fractions the smallest unit fraction is112

◦
= 5′ so that

fractions as 1
12
◦

and 5
12
◦

indicate a precision (resolution) of
1
12
◦
. However, the fraction16

◦
= 2

12
◦
, for example, may have

been rounded to the next112
◦

or 1
6
◦
. A study on the frequen-

cies of the fractions showed that the coordinates are given
with different resolutions≥5′ and that there are regional dif-
ferences in this respect (Marx, 2011). Due to the rounding of
coordinate values, random adulterations were induced.

For Illyricum Fig. 5 shows the determined transformation
units as well as the residual vectors after a transformation
with individual shifts for transformation units. Apart from a
few exceptions, the residuals are considerably smaller than in
Fig. 2. Their magnitudes are reconcilable with the assumed
local accuracy of the Ptolemaic coordinates. Table1 gives
the average of the estimated standard deviationssΛ andsΦ of
the ancient longitudes and latitudes (scale-corrected). Their
order of magnitude is about 10 km to 20 km (in Il11sΛ is
underestimated due to a low number of places; in the case
of a possible underestimation, an average a priori standard
deviations are given inKleineberg et al., 2010, 2012).

Partly the transformation units in Fig.5 overlap somewhat.
That also occurs in other regions of theGeography. Possibly,
in these cases the positions of neighbouring places were de-
termined independently.

www.hist-geo-space-sci.net/3/99/2012/ Hist. Geo Space Sci., 3, 99–112, 2012



102 C. Marx: Rectification of the ancient geographic coordinates in Ptolemy’s Geographike Hyphegesis

Figure 4. Hispania BaeticaandHispania Lusitania: residual plot
after an adjustment of scale and shift (point: (λ̄,φ̄), arrowhead:
(λ,φ)).

Figure 5. Illyricum: residual plot after the determination of trans-
formation units (point: (λ̄,φ̄), arrowhead: (λ,φ)).

Coordinate values which cannot be explained by system-
atic scalings and shifts are regarded as grossly erroneous.
Reasons for such errors are the following. The copying of the
manuscripts caused scribal errors and intensional changes of
coordinates are supposable, which may have led to correc-
tions or significant deteriorations. Further, possibly the data
underlying Ptolemy’s work were erroneous, Ptolemy made
mistakes, or he only gave crude positions in case his infor-
mation was incomplete.

Based on assumptions about the ancient coordinate accu-
racy, gross errors can be detected by statistical hypothesis
tests. The problem is aggravated by the fact that, dependent
on the region, more or less places have no certain modern
identification but more than one suggestion for the identifi-
cation. Regarding the distortion model in Eq. (1), a wrong

Table 1. Illyricum: transformation units (TU); number of placesn;
relative shifts∆Λ0, ∆Φ0 with respect to Il4; average ancient coordi-
nate accuracies ØsΛ, ØsΦ.

TU n ∆Λ0 ∆Φ0 ØsΛ ØsΦ
[◦,′] [ ◦,′] [ ′] [km] [ ′] [km]

Il1 7 −2,46 −0.13 10 13 8 15
Il2 5 −1,40 −0.48 12 16 6 11
Il3 6 −1,06 −0.12 8 11 10 19
Il4 8 – – 13 17 10 19
Il5 7 1,08 0.34 7 9 9 17
Il6 5 1,39 0.13 11 15 11 20
Il7 12 0,59 −0.15 10 13 10 19
Il8 3 1,31 −0.22 6 8 12 22
Il9 4 0,19 0.06 6 8 11 20
Il10 11 −0,17 0.05 7 10 5 9
Il11 4 −0,56 0.03 3 4 8 15

identification farther away from the correct place can be con-
sidered as a gross 2-dimensional model error.

In Fig. 5 there are five places with residual vectors differ-
ing from their neighbouring vectors, which show gross coor-
dinate errors. Two of them are wrongly located islands, two
errors can be explained by another ancient coordinate variant
and one error can be explained by a scribal error (Kleineberg
et al., 2012, p. 191).

Due to the interaction of the various errors and the varying
accuracy of the coordinate values, it is possible that the rel-
ative position of two places is contradictory (e.g. too large a
distance or western instead eastern). Nonetheless, their coor-
dinates can be acceptable in case there are other places with
the same systematic errors. An example of contradictory an-
cient positions are the strong distortions inGallia recogniz-
able by the considerable differences of neighbouring residual
vectors (cf. Fig.3).

3 The method of rectification

If the systematic errors of the Ptolemaic locations with exist-
ing identifications are determined, it will be possible to com-
pute presumable modern coordinates of unidentified Ptole-
maic locations. In doing so, also uncertain identifications
can be supported or rejected. Further, after a deduction of
the systematic errors, the remaining errors reveal the local
coordinate accuracy.

In the last decade several efforts have been made to inves-
tigate the accuracy of historical maps or to rectify them (e.g.
Beineke, 2001; Nieder̈ost, 2005). Common methods applied
are the adjustment of parameters of a transformation between
coordinates of the historical map and modern coordinates as
well as, based on this, georeferencing, a geometric rectifi-
cation as it is used in remote sensing for the rectification of
satellite images (e.g.Albertz, 1999, pp. 93). These methods

Hist. Geo Space Sci., 3, 99–112, 2012 www.hist-geo-space-sci.net/3/99/2012/



C. Marx: Rectification of the ancient geographic coordinates in Ptolemy’s Geographike Hyphegesis 103

are not suitable for a rectification of the Ptolemaic coordi-
nates since the problems differ significantly, as it is pointed
out in the following.

In the case of georeferencing of historical maps, the digi-
tized map is rectified on the basis of (unique) control points,
whose coordinates were determined in the map and the mod-
ern reference system beforehand. The parameters of a (con-
tinuous) transformation function are determined by an ad-
justment (one-step procedure); then the rectifying transfor-
mation is applied. Generally, the chosen transformation
function (mainly similar, affin, polynomial, or rubber sheet-
ing) does not specify the (unknown) causations of the com-
plex distortions and is applied to the whole map. The adjust-
ment is not based on a stochastic model (accuracy of the de-
termined coordinates). Gross erroneous areas of the map are
only identified visually. If the transformation function is not
realistic, areas with gross and systematic errors (distortions)
cannot be identified reliably. The map is not segmented in
such areas. The common measures of the accuracy derived
from the remaining errors after the adjustment depend on the
chosen transformation function and are affected by the exist-
ing but disregarded systematic and gross distortions. Then
these measures do not represent the accuracy of the sources
underlying the map (e.g. historical measurements). As an ex-
tension of the typical approach, for historical mapsBeineke
(2007) suggests a calculative consideration of the remaining
errors by a multiquadratic interpolation byHardy(1972).

In the case of the data of theGeography, the coordinates
of single places are given, whose modern coordinates are
known (certainly identified), unknown (not identified), or un-
certain and partly not unique (> 1 identifications). Places
with certain or uncertain identifications can be used as con-
trol points for an adjustment. In order to detect wrong iden-
tifications and gross errors, the transformation function has
to specify the real distortions and a stochastic model has
to be used, describing the assumed accuracy of the coordi-
nates. Since the ancient positions have local shifts in groups,
the transformation function cannot be continuous (regarding
more than one shifted group). Places with homogenous sys-
tematic errors and gross errors have to be identified. Finally
the accuracy of the ancient coordinates is of interest. It can
be assumed that the ancient places have remaining errors of
a few arc minutes up to≈ 1

2
◦
. The result of the rectification

is satisfying if the remaining errors distribute randomly by
the majority and have magnitudes explicable by the local co-
ordinate accuracy. An interpolation of the remaining errors
would be inappropriate (in terms of a rectifying transforma-
tion), because random errors must not be transferred unre-
servedly to the neighbouring places. Due to the determina-
tion of new identifications, the analysis is a repeated process.

In order to detect gross model and data errors for given
data, resistent or robust estimations are usual in data anal-
ysis (e.g. L1-norm, Huber estimator). However, these esti-
mators are not reliable in the presence of a large portion of
gross errors. Then a promising approach is a combinatorial

analysis of the observations. Here, such a method is used,
which Neitzel (2004) suggests for the deformation analysis
of geodetic networks (method of the maximum subsample or
MSS-method). Depending on the given data, this method can
be impractically due to its high computing time. Therefore,
the method is extended here by further analysis steps. More-
over, it is adapted to the peculiarities of the present problem.

In general terms, the analysis method developed is a multi-
stage combinatorial search for sets of Ptolemaic places with
homogenous distortion. Its procedure is:

1. Initial solution: analysis of the precision of the coordi-
nate values, determining approximative values for the
scales, generating initial subsets of places with similar
distortions

2. Modified MSS-method: searching for consistent trans-
formation units in the initial subsets

3. Forward-strategy: searching for best possible mergings
of unassigned places with transformation units

4. Verification of the scales: testing the suppositional
scales introduced in step 1 for validity by an adjustment
of scales

5. Merging of transformation units: testing neighbouring
transformation units for whether it is possible to merge
them

6. Postprocessing: visually checking and manually im-
proving of the results

The generation of initial subsets of places in step 1 is
necessary because of the computationally intensive modified
MSS-method in step 2 and benefits a reliable partition of the
places into groups of homogenous distortion.

In steps 1 and 3 more than one ancient coordinate variant
per place can be processed. By default the main recensions
Ω andΞ published byStückelberger and Graßhoff (2006) as
well as the editions of theGeographyby Nobbe(1843–1845)
andMüller (1883/1901) are used.

Since the random errors of the ancient coordinates may be
large, the adjustment of a scaled and shifted transformation,
Eq. (4), may result in implausible parameter values. Also
disadvantageous geometric configurations may cause unreal-
istic results. Thus, restrictions in form of constant, hypothet-
ical values formλ andmφ are introduced from step 2. This
has also the advantage that the computing time is reduced
massively in step 2 (see Sect.3.3). A test of the hypothetical
values is performed in step 4. If the test results in a rejection
of a hypothetical value, the analysis has to be repeated with
a modified value.

The analysis method is applied to separated investigation
areas for which uniform scales are assumed. The areas cor-
respond to the chapters of theGeographyor are summariza-
tions of chapters in case correlated distortions are to be ex-
pected due to a close position (e.g.Hispaniain II.4–6).

www.hist-geo-space-sci.net/3/99/2012/ Hist. Geo Space Sci., 3, 99–112, 2012
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If there remain places inconsistent in the determined trans-
formation units, reasons and actions can be: (1) The place
is consistent in a neighbouring investigation area; it will be
tested there. (2) The coordinate accuracy is lower than pre-
sumed; if justified, the a priori accuracy will be decreased.
(3) The identification is wrong; a transformation, Eq. (3),
will be performed. (4) A coordinate is grossly erroneous; a
scribal error will be quested. If input parameters are modified
or identifications are changed or join, the analysis procedure
has to be repeated (not necessarily all steps).

In the following the adjustment model and statistical tests
applied are described as well as the steps of the analysis pro-
cedure.

3.1 Adjustment model and statistical tests of consistency

The distortion parametersu j are determined by least squares
adjustment (see, e.g.Niemeier, 2002; Jäger et al., 2005),
whereby normal distribution is assumed for the random er-
rors. The assumptions about the distortions in Sect.2 lead to
the following model of an adjustment of observation equa-
tions. The Ptolemaic coordinates (Λ, Φ) are erroneous, ob-
served quantities, the modern coordinates (λ, φ) are error-
free constant quantities. The functional model (observation
equations) ofp locations is

Λi +vΛi =mλλi +Λ0 , Φi +vΦi =mφφi +Φ0 (4)

where i = 1...p and vΛi , vΦi are the corrections (here also
referred to as residuals in contrast to textbooks, where of-
ten residual=−v). The four unknown parametersmλ, mφ,
Λ0, Φ0 contain local and global effects. Especially,mλ con-
tains Ptolemy’s underestimation of the circumference of the
earth.Λ0 contains the difference between the Ptolemaic and
the modern zero meridian. (Since the Ptolemaic zero point is
not known for sure, the difference is not taken into account
beforehand; however, that is irrelevant for the results.)mλ
andmφ are set constant in steps 2, 3, 5, and 6 of the analysis
method.

The stochastic part of the model describes the accuracy
and the correlation of the observations by means of the co-
variance matrix

CΛΦ =σ2
0P−1 , (5)

where the diagonal elementsσ2
i of C are the variances, the

off-diagonal elementsσi j are the covariances,σ2
0 is the a pri-

ori variance of unit weight, andP is the weight matrix. There
is no information about correlations between the coordinates
of places as well as betweenΛ andΦ of a place so that no
correlations are applied (CΛΦ andP are diagonal).

Since theΛi andΦi have no common parameters and cor-
relations in the adjustment model, the system in Eq. (4) con-
sists of two independent systems for theΛi andΦi , respec-
tively.

Table 2. Model for the relation between resolutiona and standard
deviationσ of the ancient coordinates;σ(a) = d+ logb(a+c), b=
1.214,c=4.277,d=−7.508.

a σ(a)

[◦] [ ′] [ ′] [km]

1/12 5 4.0 7
1/6 10 6.2 11
1/4 15 7.8 14
1/3 20 8.9 16
1/2 30 10.7 20

1 60 14.0 26

Assumptions about the accuracies ofΛi andΦi can be de-
rived from the following considerations. The accuracy is re-
lated to the resolutiona of the coordinate values. Measurings
of the shadow length by a reproduction of a gnomon resulted
in standard deviations of the derived latitudes of 2.4′ (Lelge-
mann et al., 2005). Based on this, a somewhat larger value,
such asσ= 4′, is a reasonable value for the standard devia-
tion of latitudes with the most accurate resolution ofa= 5′.
This is also assumed for the longitudes here. From coordi-
nates rounded to full degree a maximal random error of about
2
3
◦

can be expected. Using the 3σ rule for gross errors here,
according to which the maximal accepted correctionv is 3σ,
a maximal error of23

◦
leads toσ = 2

3
◦

: 3≈ 14′. Standard
deviations of other resolutions were interpolated by a loga-
rithmic function, seeσ(a) in Table2. a is not known in each
case (e.g.512

◦
hasa= 5′ but 1

6
◦
= 2

12
◦

hasa= 5′ or a= 10′);
however, at least the portions of different resolutions can be
estimated according toMarx (2011). The analysis method
is started with smallσi ; after a run only individualσi are
increased if necessary and justified byσ(a).

The solution for the unknown parameters and other quan-
tities is derived by the known formulas, see, e.g.Niemeier
(2002, p. 117).

As usual, it is tested whether the adjustment model (func-
tional and stochastic) is valid for a group of observations by
the model/global test (e.g.Niemeier, 2002, p. 147). Further-
more, single observationsΛi andΦi as well as the position
vectors (Λi Φi)> are tested for gross model or data errors by
means of single tests. If a local group of places satisfies the
tests, it is considered as homogenously distorted (scaled and
shifted).

Test statistic of the model test is (e.g.Niemeier, 2002,
p. 150)

TG= r s2
0/σ

2
0 with s2

0=S/r = v>Pv/r , (6)

wherer is the redundance,S is the weighted sum of squared
residuals,s2

0 is the a posteriori variance of unit weight, andv
is the vector of the correctionsvi . TG will be χ2

r -distributed,
if the adjustment model is correct (one-sided test). Test
statistic of the one-dimensional single test with uncorrelated
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C. Marx: Rectification of the ancient geographic coordinates in Ptolemy’s Geographike Hyphegesis 105

observations is the standardized residual (e.g.Jäger et al.,
2005, p. 193)

wi = vi
√

pi/(σ0
√

r i)= vi/svi , (7)

wherepi is the weight,r i is the partial redundance of the ob-
servation, andsvi is the standard deviation of the correctionvi

from the adjustment.wi will be N(0,1)-distributed, if there is
no model error with regard to thei-th observation (two-sided
test). From a general test statistic for a group of observa-
tions (Jäger et al., 2005, p. 189) a test statistic for a position
(Λi Φi)> can be derived. Due to the independence of the two
adjustment systems for theΛi andΦi , the result is

TP=
1
2

(
w2
Λi +w2

Φi

)
. (8)

TP will be F2,∞-distributed (and 2TP χ
2
2-distributed), if there

is no model error with regard to (Λi Φi)>.
By his B-methodBaarda(1968) adapts the significance

levelαG of the model test to the significance levelαS of the
single test to make both tests comparably sensitive. To this
end, the powers of both tests are set toβG= βS and the non-
centrality parameters toλG = λS. Since the model test can
become too sensitive, a modification byHahn et al.(1989,
1991) is used here, where it is setλG= kλS with 1< k<2.

As a limit wmax for |wi | the usual values 2.5 or 3.0 (e.g.
Baumann, 1993, p. 246) are used (corresponding to signifi-
cance levelsαS≈1 % or 0.3 %, respectively).

The size of the error of an observation can be estimated by

∇=−vi/r i (9)

(e.g.Jäger et al., 2005, p. 194).

3.2 Initial solution (step 1)

3.2.1 Coordinate accuracy

In Marx (2011) a method is given to estimate the proportions
of different coordinate resolutions for a considered group of
places. The method is applied here; however, in an investiga-
tion area with a lower numbers of places the results give only
an approximate insight into the occurring precisions. Ac-
cording to the results, initially a unitary standard deviation is
chosen by the model in Table2.

3.2.2 Scales

Places of the investigation area with certain or uncertain
identification(s) are used as control points for a first ad-
justment of average parameters of distortion model Eq. (4).
Since the shifts within the investigation area are not consid-
ered, the resulting scales will be adulterated. However, the
influences of the different shifts will diminish each other so
that on average the entire influence is only low.

If there are reasonable ancient coordinate variants and/or
identification variants, the consideration of all variants can

lead to a better estimation result in comparison to a possi-
bly choice of wrong variants. In doing so, for each place all
combinations of ancient and modern variants are generated.
Each combination presents an observation equation and its
influence is weighted down so that the influence of all com-
binations of a place equals the influence of a place without
variants.

A further way to gain more reliable results is the use of
the initial subsets of places (see Sect.3.2.3), whereby the
existing shifts are considered approximately. Then, in the
adjustment model there are the joint scale parameters as well
asN groups of places with their own shift parameters. The
observations equations are

Λki+vΛki =mλλki+Λ0k , Φki+vΦki =mφφki+Φ0k , (10)

wherek= 1...N, i = 1...nk, andnk is the number of places in
thek-th group.

3.2.3 Initial subsets of places

Based on the results of the adjustment of average parameters
of distortion a residual plot is generated, showingvΛi and
vΦi . Although the adjusted scales are only approximate val-
ues, groups with homogenous shifts are indicated by similar
vectors (vΛi vΦi)>. Consequently, the places are grouped into
initial subsets of homogenous shifts. In the case of ancient
coordinate variants and/or identification variants one variant
is chosen (Ω by default).

3.3 Modified MSS-method (step 2)

The aim of the MSS-method byNeitzel (2004, p. 109) is to
find the maximal subset of the given data whose least squares
adjustment has an agreeable result. The search is performed
by going through all reasonable combinations of the observa-
tions. Combinations whose adjustment result is not agreeable
are discarded. The method is adapted to the present problem
as follows.

As criterion for the agreeability (consistency) the model
test Eq. (6) and the single tests Eqs. (7), (8) are used here.
With the increasing portion of inconsistent data the MSS-
method becomes more computationally intensive and finally
impracticable. Thus, the method is applied only in the ini-
tial subsets of places so that the data volume is relatively
small. Furthermore, the number of combinations can be re-
duced massively here by a limitation to reasonable ones (see
below). In the case of more than one maximal consistent sub-
set the weighted sum of squared residualsS is used here as a
criterion.

To make the method applicable in areas with a large por-
tion of uncertain identifications (often> 1 alternatives), it
was modified such that more than one identification per place
can be processed. For it, the different identifications of an an-
cient place are considered in the combinatorial run. That can
increase the computational time enormously so that ancient
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coordinate variants are not considered in this step. From ex-
perience, theΩ-recension often provides a proper variant so
that this variant is used by default.

Since the adjustment result could degenerate with variable
scalesmλ andmφ, both parameters are treated as constants
and get approximative values (see Sect.3.2). Minimum con-
straint of model Eq. (4) is∑

i

pΛiv
2
Λi→min ∧

∑
i

pΦiv
2
Φi→min (11)

(since (4) consists of two independent systems without corre-
lated observations, cf. Sect.3.1). Due to the constant scales,
the observation equations (4) can be rearranged to

Λi −mλλi +vΛi = lΛi +vΛi =Λ0

Φi −mφφi +vΦi = lΦi +vΦi =Φ0 .
(12)

By means of the substitutionslΛi =Λi −mλλi and lΦi =Φi −

mφφi the observation equations of the mean are obtained,
whereatlΛi andlΦi are the observations of the mean parame-
tersΛ0 andΦ0. The minimum constraint of model Eq. (12)
is also (11) so that Eq. (12) is equivalent to Eq. (4). Apply-
ing the MSS-method to determine the mean, the number of
combinations of the observations can be reduced by sorting
the observations by size; only successionally sorted observa-
tions compose a reasonable subset (Neitzel, 2004, p. 110).

At first, the search for consistent subsets is performed for
longitude and latitude separately. Tests applied are the model
test Eq. (6) and the single test Eq. (7). From the consistent
subsets found for longitude and latitude the best maximal
consistent subset of locations is derived. For that the com-
binations of the subsets in longitude and latitude are gone
through and for a combination the 2-dimensional single test
Eq. (8) is applied to the involved locations. The best max-
imal subset of locations found forms a transformation unit.
Among the remaining locations the search is continued.

3.4 Forward-strategy (step 3)

As a result of the application of the MSS-method in the initial
subsets of places there areN transformation unitsUk (k=
1...N) and in general further places without association to
a unit. Possibly, among them there are places with correct
coordinates and identifications.

In deformation analysis of geodetic networks the typical
problem is to decide, based on a group of stable points,
whether further points are deformed or not. Then a forward
strategy is common (e.g.Niemeier, 2002, p. 380), where the
questionable points are involved sequentially in the congru-
ence hypothesis (statistical test). A similar approach is used
here.

Causes of a remaining unassigned place can be: (1) con-
sistency in a transformation unit of another initial subset of
places, (2) grossly erroneous ancient coordinate variant(s)
used in the MSS-method, (3) wrong identification(s), (4) ac-
curacy in stochastic model too high. Causes (1) and (2) are

tested, that is, whether an unassigned place is consistent in a
transformation unit with one of its identifications and ancient
coordinate variants.

For a given identification the possible transformation units
are limited to the neighbouring ones (modern system). Two
tests are applied:

1. The convex hull (generated by Jarvis march,
e.g. Preparata and Shamos, 1985, p. 110) of the
considered transformation unit is enlarged by a buffer
zone with given widthb so that a polygon is generated
which represents the unit and its neighbourhood. By
means of a point-in-polygon test (carried out by the
Jordan curve theorem, e.g.Bill , 1996, p. 28) is tested,
whether the identification lies within the polygon.

2. It is tested, whether the spherical distance between the
center of the transformation unit and the identification
is lower than a given maximal valued.

For each unassigned place the given identifications are
gone through and the neighbouring transformation units are
determined. For each pair of identification and transforma-
tion unit the ancient coordinate variants of the place are gone
through. The considered unit is enlarged by the place and ad-
justed, then the locations are tested by the single tests Eqs. (7)
and (8). Among all possible mergings of places and transfor-
mation units the merging with the lowest 2-dimensional test
statistic Eq. (8) is selected. The process is repeated with the
remaining unassigned places.

Finally the model test Eq. (6) is applied on all changed
transformation units.

3.5 Verification of the scales (step 4)

In the adjustment model of the MSS-method (step 2) and the
forward-strategy (step 3) the scale parameters are set to hypo-
thetical values and are constants. On the basis of the formed
transformation unitsUk (k= 1...N), the scales can be com-
puted much more reliably than by a small number of places.
By a t-test is tested, whether the computed scales equal the
hypothetical values.

The adjustment model corresponds to Eq. (10), in which
there are the joint scale parameters as well asN groups of
placesUk with their own shift parameters. Test statistic of
the t-test (e.g.Niemeier, 2002, p. 66, 356) for one scale pa-
rameter is

Tm= |m
(0)−m|/sm , (13)

wherem(0) is the hypothetical value,m is the adjusted value,
andsm is its standard deviation.Tm will be tr -distributed, if
the expectation valueE(m) of m is the hypothetical valuem(0)

(two-sided test,r is the redundance).
If there is a significant difference between an adjusted and

a hypothetical scale, the hypothetical scale has to be modified
and the analysis method has to be repeated.
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3.6 Merging of transformation units (step 5)

By the generation of initial subsets of places with homoge-
neous distortions (step 1) groups of places are possibly sep-
arated which have no significantly different distortions. It is
necessary to merge such groups. To this end, a search for
maximal (in terms of the number of places) groups of trans-
formation units is carried out. The search is combinatorial,
comparable to the MSS-method (cf. Sect.3.3), but with the
difference that (1) the combined elements are the transforma-
tion units, (2) the consistency of the combined units is tested
by a variance-analytical method, (3) only neighbouring units
are combined.

The test of consistency of a sample ofn of N given trans-
formation unitsUk corresponds to a hypothesis test for a re-
duction of the number of parameters in the adjustment model
(e.g. Niemeier, 2002, pp. 171). For the sample is tested,
whether the 2n shiftsΛ0k andΦ0k (k= 1...n) can be reduced
to 2 shiftsΛ0 andΦ0.

From then single adjustments of theUk a joint estimation
s2

0T of the variance of unit weight can be obtained:

s2
0T=ST/rT with ST =

∑
k

rk s2
0k , rT =

∑
k

rk , (14)

wheres2
0k and the redundancerk refer toUk. (Condition is

that thes2
0k are comparable, which is given here.) A sec-

ond estimations2
0H = SH/rH of the variance of unit weight

is obtained from an adjustment of then regardedUk, in
which joint shiftsΛ0 andΦ0 are used (implicit hypothesis,
seeNiemeier, 2002, pp. 174). Of interest is the increase
R=SH−ST of the weighted sum of squared residuals. Test
statistic is

TF =R/(hs2
0T) with h= rH− rT . (15)

TF will be Fh,rT -distributed, if the involvedUk have the same
shifts. In practice, the computation ofR is performed by
a kind of an adjustment in steps (Niemeier, 1979, pp. 55),
where the available results of the adjustments of theUk are
used.

Condition for a merging of a sample ofn transformation
units Uk is that theUk compose a continuous zone. To test
this, methods of the graph theory are applied. An undirected
graph is generated whose vertices stand for theUk. Between
two vertices forUk andUl an edge will be set, ifUk andUl lie
geometrically neighboured. Then, the consideredUk will be
regarded as geometrically linked continuously, if the vertices
for theUk form a connected graph. This is tested by means
of the depth-first search (see, e.g.Turau, 2004, pp. 107).

For two transformation unitsUk andUl the condition of
neighbourhood is tested by two tests:

1. For Uk and Ul polygons are generated which repre-
sent the units and their neighbourhood (cf. Sect.3.4).
They are tested for overlap by (a) a test for inter-
section of their sides and (b) the point-in-polygon-test

(cf. Sect.3.4), which covers the case that one polygon
contains the other.

2. It is tested, whether the spherical distance between the
centers ofUk and Ul is lower than a given maximal
valued.

In practice, no mergings larger thann= 3 Uk have oc-
curred. Thus, to save computing time, the number ofUk

combined can be limited to, e.g.n=5.

3.7 Postprocessing (step 6)

The in steps 2, 3, and 5 automatically generated transforma-
tion units are visualized and their formation is checked for
improvements in case it is indicated. Above all, single places
causing strong overlaps of transformation units or having
large distances from the other places of their group are ques-
tionable results. The causative place is assigned to another
transformation unit, and the new configuration is tested by
a new adjustment and tests Eqs. (6), (7), and (8). If this is
unsuccessful, also a scribal error can be quested on the basis
of the estimated error Eq. (9).

3.8 Software

The analysis method described was implemented as a soft-
ware package. The programming language is C. It is dis-
tinguished by the speed of its compiled programming code,
which is useful for the computationally intensive combinato-
rially working algorithms used here. The results of the analy-
sis can be visualized by various outputs: transformation units
by means of DXF, KML, and command and data files for
the Generic Mapping Tools; relative shifts of transformation
units and residual vectors by means of DXF; transformed po-
sitions by means of KML.

4 Simulated example

The analysis method was tested by a simulated data set.
The aim was to reconstruct given groups of places of homo-
geneous distortions and to detect wrong identifications and
wrong ancient coordinates. Further, the accuracy of the trans-
formation was determined. A data file with the data set can
be found in the Supplement of this article.

The positions of 84 places were given in the modern coor-
dinate system. They mainly resemble modern identifications
in the regionsDacia, Moesia Superior, andMoesia Inferior
(III.8–10), so that the dispersion of the places is based on a
real situation. The places were divided into 13 transforma-
tion units E1. . . E13, they are shown in Fig.6. The given uni-
tary scales aremλ = 1.2 andmφ = 1.1. The given shifts differ
for each transformation unit, they are given in Table3 in form
of relative shifts∆Λ0=Λ0−Λ0E1, ∆Φ0=Φ0−Φ0E1 with re-
spect to the shift (Λ0E1Φ0E1)> of E1, whereΛ0E1= 20◦50′,
Φ0E1=−3◦50′. Figure6 shows the vectors (∆Λ0∆Φ0)>.
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Figure 6. Simulated example: transformation units and relative
shifts with respect to E1.

The modern positions were transformed by Eq. (1) using
the given parameters, and the resulting coordinates were con-
taminated by approximately normally distributed errors. The
standard deviation of the errors in latitude was set to 5′ and
in longitude to 5′/cos45◦ = 7′, where 45◦ is the average lati-
tude of the region considered. To degrade the conditions, the
contaminated coordinate values were not rounded according
to the highest precision occurring in theGeographybut in
longitude one third of the coordinates to the next1

6
◦
, 1

4
◦
, and

1
3
◦
, respectively, and in latitude two thirds to the next1

6
◦

and
one third to the next14

◦
. The resulting coordinates are the

simulated ancient positions of the given places. In the fol-
lowing, a place is referred to by its number (no consecutive
numeration; the hundred specifies the transformation unit).

The given transformation units, parameter values, and
modern positions are regarded as the desired solution.

For 33 places (40 %) additional simulated identifications
were generated by a change of the given modern coordinates
(with deviations of 0.05◦ to 1.4◦, mainly 0.1◦, 0.2◦, 0.3◦).
Among them, 25 places (30 %) got 1 further identification, 8
places (10 %) got 2 further identifications.

The generated ancient coordinates are regarded as origi-
nal variants in the following. For 20 places (24 %) additional
variants were generated (e.g. 5′ instead of 30′, 0′ instead of
20′). 10 of these 20 places have> 1 identifications. The
ancient coordinate variants can be regarded, for example,
as values adulterated by scribal errors. Additionally, 4 an-
cient coordinates were changed by simulated scribal errors:
No. 823: Λ= 55◦20′ instead of 55◦40′, No. 1037:Λ= 54◦

instead of 54◦30′, No. 1312:Λ= 51◦20′ instead of 51◦40′,
No. 1314:Φ=47◦40′ instead of 48◦40′.

The accuracy of the transformation of ancient into mod-
ern coordinates depends on the accuracy of the determined
parameters. After the application of the analysis method to

Table 3. Simulated example: transformation units (TU); number
of placesn; given relative shifts∆Λ0, ∆Φ0 and determined relative
shifts∆Λ̂0, ∆Φ̂0 with respect to E1; determined ancient coordinate
accuraciessΛ, sΦ.

TU n ∆Λ0 ∆Λ̂0 ∆Φ0 ∆Φ̂0 sΛ sΦ
[◦,′] [ ◦,′] [ ◦,′] [ ◦,′] [ ′] [ ′]

E1 9 – – – – 6 6
E2 3 0.30 0.28 −0.25 −0.30 8 4
E3 11 −0.50 −0.54 −0.10 −0.10 8 5
E4 6 −0.30 −0.27 −0.45 −0.47 12 4
E5 5 0.00 −0.02 −0.15 −0.15 9 6
E6 5 1.20 1.19 −0.05 −0.02 6 6
E7 4 0.40 0.40 0.10 0.11 11 2
E8 4 1.00 0.59 1.40 1.42 6 6
E9 4 0.20 0.17 1.15 1.19 4 9
E10 15 −0.10 −0.11 0.45 0.45 7 6
E11 4 −0.40 −0.39 0.15 0.15 2 4
E12 5 0.10 0.10 0.35 0.39 4 4
E13 9 1.00 1.00 0.20 0.24 6 5

the example, the accuracy of this transformation was deter-
mined. In doing so, ancient coordinates of additional places
were generated randomly in the area of the given places.
Since only the accuracy of the transformation mattered in
this test, the generated ancient coordinates were not con-
taminated. For a generated position a transformation unit
was chosen by a point-in-polygon test based on the buffer-
polygons of the given transformation units, where buffer
width wasb= 1

2
◦

(cf. Sect.3.4). (In the case of more than
one possible units one was chosen randomly.) 1000 pairs
of positions and transformation units were generated. Then
transformation Eq. (3) was performed using the desired pa-
rameters as well as the determined parameters. From the dif-
ferences between both results the empirical variances

s2
λ =

1
m

m∑
i=1

(λ̄i − λ̃i)
2 , s2

φ =
1
m

m∑
i=1

(φ̄i − φ̃i)
2 , (16)

were derived, wherēλ andφ̄ are based on the desired param-
eters and̃λ andφ̃ are based on the determined parameters.

4.1 Applying the analysis method

In the following, the results of the several runs of the analysis
method are documented.

4.1.1 Run 1

1. Initial solution: In the estimation of the proportions of
the different resolutions coordinates with> 1 variants whose
fractions of degree differ were not considered. The resulting
main resolutions are:Λ: 53 % 1

6
◦
, 38 % 1

4
◦
, 12 % 1

3
◦
; Φ:

72 % 1
6
◦
, 27 % 1

4
◦
. Due to the small sample, the result forΛ

reproduces the real roundings only poorly. On the basis of
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Figure 7. Simulated example: residual plot and initial subsets of
places.

Table2, with a≥ 1
6
◦

for Φ it is setσΦ = 6.5′. That also holds
for Λ; another approach, however, isσΛ =σΦ/cosφ≈ 9′ so
that the intermediary valueσΛ =8′ was chosen.

An adjustment of average parameters based on all given
locations including the modern and ancient variants was per-
formed. The result is:mλ = 1.27, mφ = 0.96, Λ0 = 19◦12′,
Φ0 = 2◦46′. The deviations of the adjusted scales from the
desired values are< 0.1. To degrade the conditions, for the
following analysis the somewhat worse approximative values
m(0)
λ =1.3 andm(0)

φ =1.0 were used.
Further, to degrade the conditions, for the residual plot

based on the adjustment result the additional and not the
original ancient coordinate variants and about 50 % of the
wrong modern positions were used. The residual plot and
the constructed initial subsets of places are shown in Fig.7
(modern position with ancient correction vector (vΛ vΦ)>).
Among the initial subsets there are four incorrect mergings
of transformation units: E1 and E2, E4 and E5, E8 and E9,
E10 and E11.

2. Modified MSS-method: Variants of ancient coordinates
cannot be considered by the method. To degrade the condi-
tions, in the cases of ancient coordinate variants not the orig-
inal but the additional variant was used. The parameters of
the statistical tests arewmax= 2.5 (lower value here for more
reliable results),βS= βG=0.8, λG=1.3λS.

As a result, the desired transformation units formed partly,
see Fig.8; initial subsets containing incorrectly merged
transformation units split up. 20 unassigned locations
remained. There were 1 wrong identification (No. 1349), 1
location in wrong transformation unit (No. 307 in E5 instead
of E3), 4 accepted additional/wrong ancient coordinate
values (Nos. 229, 339, 651, 823).

Figure 8. Simulated example: transformation units after MSS-
method (run 1).

3. Forward-strategy: The parameters of the statistical
tests arewmax= 3.0, βS = βG = 0.8; the parameters of the
geometric tests areb = 1◦, d = 1.5◦. 17 locations were
merged with the correct transformation units. The originally
given ancient and modern variants of coordinates/positions
were determined. After a final adjustment a model error
was detected for the longitudes of E4 by the model test
(λG = 1.3λS). This was ignored, because the scales had not
yet been verified.

4. Verification of the scales: The adjusted parameters are
mλ = 1.24±0.03 andmφ = 1.10±0.03. They deviate signif-
icantly from the expectation valuesm(0)

λ = 1.3 andm(0)
φ = 1.0

(α=5%). That necessitates a further run.

4.1.2 Run 2

1. Initial solution: The adjusted scales from run 1 are used
as new parameters:m(0)

λ = 1.24, m(0)
φ = 1.10. Since their

differences to the input values of run 1 are only 0.1, a new
residual plot is not necessary.

2. Modified MSS-method: 21 unassigned locations re-
mained. In 3 cases the additional ancient coordinate variant
was accepted (Nos. 229, 339, 823).

3. Forward-strategy: 19 locations were merged correctly
with transformation units.

4. Verification of the scales: The adjusted parameters are
mλ = 1.19±0.02 andmφ = 1.10±0.02. mλ deviates signifi-
cantly from the input valuem(0)

λ = 1.24. That necessitates a
further run.
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4.1.3 Run 3

(Step 2 see run 2.)
1. Initial solution: The initial scales arem(0)

λ = 1.19 and
m(0)
φ =1.10.

3. Forward-strategy: 19 locations were merged with
transformation units, thereof No. 1313 with E12 instead of
E13 due to its additional ancient coordinate variant.

4. Verification of the scales: The adjusted parameters are
mλ = 1.18±0.02 andmφ = 1.09±0.02. They do not deviate
significantly from the initial values.

5. Merging of transformation units: The parameter of the
statistical test isα = 5 %; the parameters of the geometric
tests areb=1.5◦, d=2◦. There were no mergings.

6. Postprocessing:The merging of No. 1313 and E12 is
questionable, because No. 1313 causes a strong overlap of
E12 and E13. A merging of No. 1313 and E13 resulted in a
smaller residual (by the original ancient variant) so that this
new merging was accepted.

4.1.4 Run 4

(Steps 2, 4–6 see run 3.)
1. Initial solution: In run 3 locations Nos. 1037 and 1314
stayed without assignment. The causative coordinate was
indicated in step 3 by a large residual. For the improper
Λ = 54◦00′ of No. 1037 a rough rounding can be expected
and for the improperΦ= 47◦40′ of No. 1314 a resolution of
1
3
◦
. According to Table2, the new standard deviations are

14′ and 9′, respectively.

3. Forward-strategy: No. 1037 was merged with E10,
No. 1314 stayed without assignment.

4.2 Detection of scribal errors

The unassigned place No. 1314 was transformed (modern
into ancient) by the parameters of E13, which came into
consideration due to the position. The resulting ancient lat-
itude isΦ̄ = 48◦37′ ≈ 48◦40′. In comparison with the given
Φ=47◦40′ the scribal error 48◦→47◦ became evident.

Due to its largerσΛ introduced in run 4, No. 1037 had
a low influence on the adjustment so that the not detected
scribal error inΛ is unproblematic. However, the resulting
vΛ = 28′ of Λ = 54◦00′ is noticeably large. The estimation
of the error by Eq. (9) is ∇=−28′ so that the correctedΛ is
54◦28′ ≈54◦30′ and the scribal error 54◦30′→54◦00′ can be
assumed.

The further two locations (Nos. 823, 1312) with simulated
scribal errors have no noticeable residuals. The reason is

that the scribal errors correct the randomly adulterated co-
ordinates to some extent.

4.3 Results

The nature of the residual plot of the example (Fig.7) cor-
responds to that of the residual plots of the original data in
Figs.2, 3, 4. That argues for the kind of distortions assumed
for the original data.

Despite the involved additional ancient coordinates and
wrong identifications the scales were determined sufficiently
accurately by a first adjustment of average values for the
scales and shifts (step 1). The analysis method iterated within
three runs to scale parameters being statistically identical
with the given values. The automatic steps (2–5) of the
method worked satisfactorily; except for one wrongly as-
signed place, the given groups of locations with homoge-
nous shifts and the given modern identifications were recon-
structed finally. By a manual preprocessing the wrong as-
signment was found and corrected.

There are three places with ancient coordinate variants
whose given original variant was not determined by the
analysis. However, the three determined variants are, com-
pared to the original variants, more or comparably accurate
(e.g. No. 339: givenλ = 22◦47′, systematically adulterated
47◦20′, original (random) variantΛ=47◦30′, additional vari-
ant 47◦10′). Similarly, two of four simulated scribal errors
were not detected, because the altered values are actually
corrections. Thus, in practice, possibly not the original but
the more accurate ancient coordinate variant is determined,
which is preferable for a determination of accurate transfor-
mation parameters.

Table3 gives the determined shifts in the form of relative
shifts∆Λ̂0 and∆Φ̂0 with respect to the shiftŝΛ0E1 andΦ̂0E1

of E1, where∆Λ̂0= Λ̂0− Λ̂0E1, ∆Φ̂0= Φ̂0− Φ̂0E1. The deter-
mined relative shifts agree well with the given values (Cols.
∆Λ0, ∆Φ0), the differences range from 0′ to 5′. Furthermore,
Table3 gives the estimated standard deviationssΛ andsΦ of
the ancient coordinates. In the case of transformation units
with a larger number of places the accuraciessΛ = 6′ to 12′

and sΦ = 5′ to 9′ express the adulterations generated by co-
incidence and rounding well. In the case of less places the
accuracy is overestimated.

The transformation of the 1000 randomly generated an-
cient locations by means of the determined transformation
parameters resulted in accuracies ofsλ =2.3′ andsφ =2.1′ by
Eq. (16). Thus, the errors of the transformation are smaller
than those of the ancient coordinates (here≥ 5′) so that they
are negligible.

5 Conclusions

Since the geographic coordinates of the ancient places in
Ptolemy’sGeographyare strongly erroneous, they cannot be
used directly to find the modern counterparts of unknown
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places. An insight into the distortions of the coordinates was
given by a visualization for exemplary regions. For a rectifi-
cation it is important to model the occurring errors close to
reality. This is taken into account by a new analysis method
which was presented. The method provides a way to vali-
date the Ptolemaic coordinates of certainly identified places
as well as to verify uncertain identifications. Further, by
means of the determined systematic errors, ancient coordi-
nates of so far unknown places can be transformed approx-
imately into modern coordinates. In conjunction with topo-
graphic, historical, and archaeological information these cal-
culational results can lead to the modern counterparts of the
ancient places.

The analysis method was tested on a simulated example
comparable with the real data situation. The method worked
satisfactorily, the simulated systematic and crucial gross er-
rors were determined. The transformation of ancient into
modern coordinates turned out to be satisfactorily accurate.

In practise, the accuracy of the transformed coordinates
is additionally downgraded by the (local) inaccuracy of the
ancient coordinates considered. Further, deviations from the
used error model or occasionally less accurate transformation
parameters can adulterate the transformation result. Hence,
the transformed coordinates and the derived identifications
are afflicted with uncertainties. That is taken into account by
giving a grade of certainty or the kind of information under-
lying the modern identifications.

The analysis method has been applied in an interdisci-
plinary project at the Technische Universität Berlin. The
results for the identifications of the places of Book II are
published inKleineberg et al.(2010, 2012), the results for
Book III will be published soon.

It is conceivable that the basic approach of the analysis
method presented can be used or modified respectively for
other problems concerning the partition of data into consis-
tent subsets and gross erroneous elements, not only in view
of historical data, but also today’s measurement data.

Supplementary material related to this
article is available online at:
http: //www.hist-geo-space-sci.net/3/99/2012/
hgss-3-99-2012-supplement.zip.

Edited by: G. A. Good
Reviewed by: G. A. Good and another anonymous referee
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