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Abstract. The geodetic and geophysical literature shows an abundance of mascon approaches for modelling
the gravity field of the Moon or Earth on global or regional scales. This article illustrates the differences and
similarities between the methods, which are labelled as mascon approaches by their authors.

Point mass mascons and planar disc mascons were developed for modelling the lunar gravity field from
Doppler tracking data. These early models had to consider restrictions in observation geometry, computational
resources or geographical pre-knowledge, which influenced the implementation. Mascon approaches were later
adapted and applied for the analysis of GRACE observations of the Earth’s gravity field, with the most recent
methods based on the simple layer potential.

Differences among the methods relate to the geometry of the mascon patches and to the implementation of the
gradient and potential for field analysis and synthesis. Most mascon approaches provide a direct link between
observation and mascon parameters – usually the surface density or the mass of an element – while some methods
serve as a post-processing tool of spherical harmonic solutions. This article provides a historical overview of the
different mascon approaches and sketches their properties from a theoretical perspective.

1 Introduction

The gravity field of the Earth influences daily life in many
ways. Local plumb lines define the upward direction, and
several scientific instruments must be levelled before usage.
Gravity measurements provide corrections for geophysical
height systems and allow the exploration of mineral deposits
or caves. A gravity field model is also required for inertial
navigation systems within aeroplanes, ships or submarines.
On a regional or global scale, mass redistributions – like the
melting of glaciers or the changes in ground water – are re-
flected in the temporal variations of the gravity field.

The gravity field of the Earth – or another celestial body –
can be analysed on a global scale when enough orbiting satel-
lites are tracked, even without special onboard instruments or
ground-based measurements. Satellite data provide a fast and
homogeneous sampling in contrast to ground-based observa-
tions. The gravity field analysis establishes a connection be-
tween the tracking data and a set of base functions to model
the gravity field. An analysis by spherical harmonic functions

is preferable for spherical bodies, as these base functions are
the natural solution of the Laplace equation. This set of base
functions is also a complete and orthogonal system, which
simplifies the analysis. However, a reasonable spherical har-
monic analysis requires orbit observations with global and
homogeneous data distribution, and the model will have the
same resolution everywhere.

Alternative localising base functions – e.g. point masses,
spherical radial base functions, wavelets, Slepian function
– are investigated and applied when the data distribution is
irregular or when more details in a region of interest shall
be detected. This article will summarise the localising base
functions, which are labelled as mascons and applied for the
gravity field modelling of the Earth and Moon.

Studies of the early lunar orbiters demonstrated significant
orbit disturbances, which were traced back to an irregular
lunar gravity field. The term “mascon” was introduced by
Muller and Sjogren (1968b) for describing these mass con-
centrations near the surface. In the same work, the name mas-

Published by Copernicus Publications.



206 M. Antoni: Review of different mascon approaches

con was also introduced for the mathematical modelling of
these mass concentrations. The concept was applied for sev-
eral years to the gravity field of the Moon, as the method was
capable of the nearside restriction of data in contrast to spher-
ical harmonic solutions. Interest in regional modelling of
the Earth’s gravity field has increased significantly since the
gravity field mapping mission GRACE (2002–2017) and its
successor mission GRACE-FO (2018–present). The new ob-
servations enabled the analysis of temporal variations caused
by the redistribution of water and ice masses, where regional
gravity field modelling overcomes the spherical harmonic so-
lutions. Hence, the mascon concept has been adapted and ap-
plied to Earth-related data by several research groups, either
for regions of interest (Luthcke et al., 2008; Schrama et al.,
2014; Ran et al., 2018) or on a global scale (Koch and Witte,
1971; Andrews et al., 2015; Save et al., 2016).

A closer inspection of the publications, however, shows a
variety of approaches under the label of mascons. This arti-
cle will give a historical overview of the most prominent rep-
resentatives and an adequate definition of the mascon base
functions. All different meanings of the investigated mascon
approaches can be covered by the following definition: the
term mascon either refers to the fact of a significant grav-
itational anomaly within a celestial body or to a modelling
of these anomalies by localising base functions. The local-
ising base functions, which are labelled as mascons, include
point masses or discrete surface elements based on the sim-
ple layer potential. In the case of surface elements, the sur-
face density is constant per mascon, and each localising base
function is – in a spectral representation, at least in the limit
of high-degree expansion – a two-dimensional step function
on the sphere. Methods of post processing are also labelled as
a mascon approach when their surface elements have a con-
stant surface density. The shape of the mascon is not relevant
for the definition, and the surface of the celestial body is not
necessarily covered.

This publication is focused on the mascons’ definitions
and will ignore other processing steps, like background mod-
els, regional constraints or regularisation techniques. Each
mascon approach is presented by the associated gravitational
potential of a single element and its gradient in the nota-
tion of representative literature. The properties of each ap-
proach are deduced from the theoretical perspective only, but
without treating programming experiments or numerical as-
pects. Such a detailed and comprehensive review of the dif-
ferent mascon approaches cannot be found in literature to our
knowledge.

In several previous articles, the authors quote only the
original publication (Muller and Sjogren, 1968b) for the term
mascon and restrict themselves in the following texts to a
specific mascon approach with its literature (e.g. Luthcke
et al., 2008; Lemoine et al., 2007; Krogh, 2011; Andrews
et al., 2015).

A point mass model and planar discs are applied for mod-
elling the lunar gravity field in Wong et al. (1971), and both

methods are considered as mascon approaches. In Watkins
et al. (2015) and Save et al. (2016), different mascon ap-
proaches are presented in the introductions, but without for-
mulas or historical background. The authors of both articles
classify three principal concepts:

A. mascons that have an analytical expression for the grav-
itational potential and explicit partial derivatives for the
gradient;

B. mascons that are represented by a finite series of spher-
ical harmonic functions and with partial derivatives de-
rived via the chain rule;

C. mascons that serve as a post-processing tool to ob-
tain regional mass changes from monthly spherical har-
monic solutions.

An analogous classification with additional literature is pre-
sented by Abedini et al. (2021a), whose contribution is a nu-
merical method for the gradient, which does not fit into the
threefold scheme.

Many recent publications are related to the mascon so-
lutions of either the NASA Goddard Space Flight Center
(GSFC), the Jet Propulsion Laboratory (JPL) or the Center
for Space Research (CSR). The current JPL solutions are
spherical cap mascons with analytical partial derivatives –
i.e. category A in the classification – which are presented
in Sect. 3.2. The mascon approaches of GSFC and CSR are
based on spherical harmonic functions, and they are a promi-
nent example of type B (see Sect. 3.1). The mascon visu-
alisation tool at the University of Colorado Boulder (https:
//ccar.colorado.edu/grace/index.html, last access: 23 Septem-
ber 2022) enables an analysis and comparison of the latest
solutions at JPL and GSFC for regions and generates time
series per location.

2 Mascons for modelling the lunar gravity field

2.1 Mascons – mass anomalies close to the Moon’s
surface

The origin of the mascon concept is closely related to early
models of the lunar gravity field.

In the space race between the Soviet Union (USSR) and
the United States of America (USA), both nations wanted
to send their representatives to the Moon first. The possible
landing sites were investigated by spacecrafts, starting with
Luna 1 (USSR) in 1959, which missed the Moon due to nav-
igation issues. The first man-made object on the Moon was
the space probe Luna 2 (USSR) in a design impact in 1959,
followed by several missions by both nations. The spacecraft
Luna 10 (USSR) and Lunar Orbiter 1 (USA) were the first
artificial orbiters around the Moon in 1966 (Neal, 2008).

In both orbiter missions, the observed orbits differed af-
ter a short time from the predicted ones, which indicated
either an incorrect or an incomplete model. As other error
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sources could be excluded soon, the orbit disturbances were
explained by significant mass anomalies below the Moon’s
surface. For these anomalies, the term “mass concentration”
or “mascon” was introduced in Muller and Sjogren (1968b).

All identified mascons on the nearside of the Moon cause
relatively large and positive effects up to 200 mGal, and their
locations are one-to-one correlated to the major lunar maria,
including Imbrium, Serenitatis, Crisium, Humorum and Nec-
taris, which are visualised in Fig. 1 (Muller, 1972).

In particular for the Moon it is still common to call a large
area with a significant positive mass anomaly a mascon in-
dependent of its mathematical representation (Floberghagen,
2001, p. 3). A similar behaviour can be found, for example,
in Barthelmes (1986, p. 35), where the mass anomalies of
the Earth’s gravity field are called mascons without using the
phrase for the mathematical modelling as well. This thesis fo-
cuses on the point mass modelling, but it also sketches simple
layer potential with discrete surface elements, and both as-
pects will be identified as mascon approaches in the current
article.

2.2 Point mass mascons

A quick modelling of the mass anomalies was important for
the preparation of the latter space missions and the landing
on the Moon. The chosen representation should

– consider the geographical pre-knowledge, i.e. the lunar
maria as expected locations of the mass anomalies;

– consider the observation geometry, i.e. the fact that only
the near side of the Moon allows observations from ter-
restrial ground stations;

– enable a direct relation between observables – Doppler
tracking data in the case of the early lunar missions –
and the estimated mascon parameters;

– remain simple due to limited computer resources.

The first three requirements are still important arguments for
regional gravity field analysis – by mascons, wavelets, radial
basis functions, Slepian functions, etc. – while the limited
resources implied a simple modelling of the anomalies by
point masses.

The original papers (Muller and Sjogren, 1968a, b; Muller,
1972) lack a formula representation of the potential, but it is
re-constructed, for example, in Floberghagen (2001, p. 19):

V (rP)=GM

(
1
‖rP‖

−

Q∑
q=1

δmq

‖rP− rq‖

)
, (1)

with

– V (rP): gravitational potential at the calculation
point rP;

– G: gravitational constant;

– M: mass of the celestial body;

– δmq : mass ratio between point masses and total
mass M;

– rq : centres of the point masses.

Please note that, for consistency, all mascon quantities and
their geometries are labelled in this article by means of an
index (here: q = 1,2, . . .,Q), and the calculation point is la-
belled by the index P , both independent of the cited articles.

2.2.1 Relation to the observation and the estimation
process

A standard observation technique for space probes is the
Doppler tracking, i.e. the change in frequency of a (re)-
transmitted signal due to the relative motion of the space-
craft and the ground station. The American missions use a
few globally distributed stations, which meanwhile form the
Deep Space Network of the NASA and which are operated
by JPL today1. The Doppler signal does not provide com-
plete information on the position or velocity; rather, it only
projects the relative velocity between station and space probe
onto the line of sight (Muller and Sjogren, 1968a; Wein-
wurm, 2004; Floberghagen, 2001).

The relationship between observation and mascon param-
eters requires a description of the change in the velocity –
i.e. the acceleration – of the spacecraft caused by the gravita-
tional potential. Hence, it is sufficient to derive the gradient
by r̈P =∇V (rP) of the potential. For point mass models, the
gradient is calculated via

∇V (rP)=GM

(
−

1
‖rP‖3

rP+

Q∑
q=1

δmq

‖rP− rq‖3

(
rP− rq

))
. (2)

To emphasise the special requirements and restrictions for
the early lunar modelling, some details will be sketched here
as well: according to Muller and Sjogren (1968a, b), residual
observations are created by removing the gravitational effect
of a tri-axial Moon model and the acceleration of the Sun
and other planets from the raw Doppler tracking data. Cu-
bic polynomials are fitted to the residuals for smoothing and
estimation of accelerations. The accelerations are mapped to
a constant orbit height of 100 km altitude above the Moon’s
surface. The point masses are introduced directly below the
trajectory, with a depth of 50 km below the surface, and their
magnitudes are estimated. Additional information is given in
Wong et al. (1971), such as the restriction to 100 parameters
in the estimation process due to implementation as well as
the step-wise solutions in north–south bands, which usually
cover 8 trajectories – with 48 elements in the estimated state
vectors – and around 50 point masses below the tracks.

1The equivalent system of the USSR is not discussed in the in-
vestigated material.
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Figure 1. Lunar maria and selected tracks of the Lunar Orbiter given in Muller (1972).

2.3 Point mass mascons for irregular celestial bodies

Point mass mascons are also used in a different way to deter-
mine the gravity field of irregular celestial bodies. An exam-
ple can be found in Chanut et al. (2015), where the gravity
field of the asteroid 216 – also known as Kleopatra – is pre-
dicted by polyhedron models and point mass mascons. In the
case of asteroids, the irregular shape is observed by optical
instruments first; only in rare cases, orbiters investigate the
gravity field directly. The observed shape is approximated by
tetrahedrons with three corners on the surface and one in the
geometrical centre of the asteroid (see Fig. 2a). Point masses
are located then, either one per tetrahedron in its geometrical
centre or three in the centres of a geometrically sub-divided
tetrahedron (see Fig. 2b). Assuming a constant density of the
asteroid and a known total mass, the mass per mascon is as-
signed to a value proportional to the surrounding volume, and
the gravity field around the object can be predicted.

Properties

The point mass mascons have closed formulas for potential
and explicit partial derivatives, which identify them as type A
mascons in the threefold scheme.

+ The method is very easy to implement and requires only
a few computational resources.

+ The gradient and all other field quantities are found with-
out quadrature.

− The model is singular for the potential and the gradient at
the location of the point masses.

− In the case of the lunar gravity field, assumptions are re-
quired for the location and depth below ground, as the
Doppler tracking data and the observation geometry do
not allow a detection of this information from the mea-
surement.

It should be pointed out that the modelling by point masses
is applied, for example, in Baur and Sneeuw (2011) or in
Barthelmes (1986), Claessens et al. (2001), and Lin et al.
(2014) without being labelled as a mascon approach by the
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Figure 2. Modelling the gravity field of the asteroid 216 a.k.a.
Kleopatra by point mass mascons according to Chanut et al. (2015).
(a) Polyhedron model of the asteroid; (b) geometrically sub-
division of one tetrahedron by parallel planes with the mascon lo-
cations as large dots. Panel (b) was converted to grey-scale for this
article.

authors, and that in the latter examples also the positions of
the masses are estimated for regional studies of the Earth’s
gravity field. An iterative algorithm is developed and justi-
fied via quasi-orthogonality in the sense of an inner product
in Barthelmes (1986). To stabilise the optimisation process,
the possible movement per point mass shall be restricted in
depth but also in radial or tangential direction with respect to
an initial position.

2.4 Planar disc mascons

As a response to Muller and Sjogren (1968b), an article by
Conel and Holstrom (1968) presented a physical interpreta-
tion of the ringed lunar maria, according to which former
impact craters are filled afterwards by denser material. The
authors experiment in the modelling of the mass anomalies
with an arrangement of planar discs of finite thickness in-
side the impact craters and demonstrate a better post-fit to
the residual Doppler tracking data for Mare Serenitatis.

The obvious issues of point masses are discussed in Wong
et al. (1971):

– the singularities of the model at the centres;

– bad fitting of the residual tracking data in the equatorial
zone of the Moon due to the observation geometry;

– and combination issues with the spherical harmonic
models (of very low degree and order at the time).

To overcome these problems, finite mass elements are sug-
gested for modelling the gravitational anomalies, which also
agrees with the physical ideas in Conel and Holstrom (1968).

For a simple and efficient solution, the finite mass ele-
ments are chosen to be oblique rotational ellipsoids, also
known as spheroids (Wong et al., 1971). The gravitational
potential of a spheroid and its gradient are derived in Moul-
ton (1960, pp. 119–132). On the one hand, the gravitational
potential requires a series expression:

V =
M

R

[
1+

b2

10
x2

P + y
2
P − 2z2

P
R4 e2

+O(e3)

]
, (3)

with

– M: total mass of the spheroid (the gravitational constant
is neglected in this exercise of the book);

– R = ‖rP‖: Euclidean distance between the spheroid’s
centre and the calculation point; rP = (xP,yP,zP) out-
side the body,

– b: semi-minor axis of the spheroid (and semi-major axis
a);

– e =

√
a2−b2

a2 numerical eccentricity.

On the other hand, the gradient of the potential can be derived
in a closed formula. In Wong et al. (1971), the semi-minor
axis b is then squeezed to zero, which leads to the attraction
of a circular and planar disc. The article provides the gradient
of a single disc in the form

ẍ =−
3Gm
2a3

(
−
√
k

(1+ k)
+ arcsin

(
1

√
1+ k

))
x

ÿ =−
3Gm
2a3

(
−
√
k

(1+ k)
+ arcsin

(
1

√
1+ k

))
y

z̈=
3Gm
a3

(
1
√
k
− arcsin

(
1

√
1+ k

))
z, (4)

where k fulfils the quadratic equation

k2a2
+

(
a2
−

(
x2
+ y2
+ z2

))
k− z2

= 0. (5)

To bring the expressions of the gradient in Moulton (1960)
and Wong et al. (1971) into an analogous form, the identity
arcsinζ = arctan(ζ/

√
1+ ζ 2) must be kept in mind. It also

turns out that the value k is linked to the numerical eccentric-
ity of the spheroid by the relation e = (1/

√
1+ k).

These planar disc mascons must be rotated and translated
on the surface or close to it onto different locations, which is
only implicitly indicated due to the definition of the coordi-
nates (x,y,z) with respect to the centre of each disc (Wong
et al., 1971).
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Properties

The planar disc mascons have closed formulas for explicit
partial derivatives of the potential, which identifies them as
type A mascons.

+ The closed formulas do not require any integration for the
gradient.

+ The surface elements all have the same shape, size and
area for each mascon.

− The potential of a mascon requires a series expansion.

− The model is singular for the potential at the centre of the
disc.

− The surface elements do not cover the complete surface,
even in a global analysis.

− Most points within a disc are either above or below the
spherical surface.

In fact, the planar disc mascons are a kind of a simple layer
potential, but without implicit or explicit integration for the
gradient.

3 Simple layer potential and its regional subdivision

Modelling the gravitational potential by a simple layer was
well known in geodesy and became popular around 1970.

The method can be applied to the complete potential or to
a residual field after subtracting a reference field. The basic
idea is to condensate the (remaining) in-homogeneous mass
distribution onto the surface S, either the topography itself
or a simpler reference like a sphere or spheroid (Koch and
Witte, 1971; Morrison, 1971).

The gravitational potential of the layer is given by

V (rP)=G
∫∫
S

σ (�)
` (�,rP)

d�, (6)

with

– V (rP): gravitational potential at the calculation
point rP;

– σ (�): location-dependent surface density;

– G: gravitational constant;

– `(�,rP)=
√

(xP− x)2+ (yP− y)2+ (zP− z)2:
Euclidean distance2 between calculation point rP =

(xP,yP,zP) and all surface points P = (x,y,z), with
P ∈ S;

2The unusual arguments of the distance expressions are intro-
duced here for highlighting the dependency on two distinct point
sets.

– d�: the differential surface element.

In the mascon version of the simple layer potential, the
surface S is sub-divided into smaller regions Sq – which are
called surface elements or patches in this article – where the
density is assumed to be constant. This leads to the mascon
representation of the (residual) potential:

Vq (rP)=Gσq

∫∫
Sq

1
`(�,rP)

d�, (7)

V (rP)=
Q∑
q=1

Vq (rP). (8)

A linear combination Eq. (8) of all mascons – where the
summation weights σq are included in the potential Vq (rP)
per mascon – generates the potential of the simple layer
again. On the one hand, it should be pointed out that the
method is applied, for example, in Koch and Witte (1971)
without being labelled as a mascon approach. On the other
hand, all the following mascon approaches are based on the
simple layer potential with discrete surface elements and
constant surface densities, which justifies the mascon label
here.

3.1 Lumped spherical harmonics as mascons

Solving the Laplace equation in spherical coordinates leads
to the spherical harmonic functions as a natural basis for
gravity field modelling. An adequate linear combination of
spherical harmonic functions can also be used to define local-
ising base functions like the mascons in the spectral domain.
Due to this combination over all degrees and orders, the re-
sult is sometimes labelled as the “lumped spherical harmonic
approach” (Klosko et al., 2009).

Firstly, the gravity field is decomposed into a static field
and its temporal variations:

V = V0+Vt . (9)

The static field and the mascons are represented by spheri-
cal harmonic synthesis. According to Heiskanen and Moritz
(1967), Koch and Witte (1971) and Seeber (2003), the poten-
tial is given by

V0 (λP,θP, rP)=
GM

r

L∑
l=0

(
R

r

)l l∑
m=0

P l,m(cosθP)

×

(
Cl,m cosmλP+ Sl,m sinmλP

)
, (10)

with

– V0(λP,θP, rP): potential of the static field;

– (λP,θP, rP): spherical coordinates of the evaluation
point rP, i.e. longitude λP, co-latitude θP and radius rP;

Hist. Geo Space Sci., 13, 205–217, 2022 https://doi.org/10.5194/hgss-13-205-2022



M. Antoni: Review of different mascon approaches 211

– GM: product of gravitational constant G and the mass
of the celestial body M;

– R: radius or semi-major axis of the spherical or ellip-
soidal reference body;

– P l,m(cosθ ): fully normalised Legendre functions;

– {Cl,m,Sl,m}: fully normalised spherical harmonic coef-
ficients, also known as Stokes coefficients.

The approach arose at GSFC when analysing the data of
the GRACE mission, and it is presented in a sequence of ar-
ticles (Rowlands et al., 2005; Lemoine et al., 2007; Klosko
et al., 2009; Rowlands et al., 2010; Luthcke et al., 2013).

The mascons are generated in the spectral domain by
(time-dependent) delta Stokes coefficients or differential
Stokes coefficients of a simple layer:

1C
q

l,m(t)=
(
1+ k′l

)
R2

(2l+ 1)M
σq (t)

∫∫
Sq

P l,m(cosθ )cosmλd�,

1S
q

l,m(t)=
(
1+ k′l

)
R2

(2l+ 1)M
σq (t)

∫∫
Sq

P l,m(cosθ ) sinmλd�, (11)

with the Love numbers k′l for considering the loading effects
of the extra masses on the surface.

The mascon solutions of the JPL are published online
(https://earth.gsfc.nasa.gov/geo/data/grace-mascons, last ac-
cess: 23 September 2022); the mascon solution of the CSR
can also be found online (http://www.csr.utexas.edu/grace/,
last access: 23 September 2022). As the formulas require
standard techniques of geoscience, other groups are also
working with these kind of mascons (e.g. Andrews et al.,
2015; Krogh, 2011).

The lumped spherical harmonic approach can be used for
any (almost spherical) body, but the approach is introduced
for analysing the temporal variations of Earth’s gravity field
due to the variable water storage in particular. Taking into
account that a uniform layer of 1 cm fresh water within an
area of 1 m2 has a mass of around 10 kg, the density is re-
written in Rowlands et al. (2010) and Luthcke et al. (2013) as
σq = 10Hq – in Save et al. (2016) the factor σq = 10.25Hq is
used instead – to express the results in centimetres of equiva-
lent water height. Each mascon is determined by a spherical
harmonic synthesis

Hq (rP, t)=
M

40πR2

L∑
l=0

(
2l+ 1
1+ k′l

) l∑
m=0

P l,m(cosθP)

×

(
1C

q

l,m(t)cosmλP+1S
q

l,m(t) sinmλP

)
(12)

on the spherical surface r = R and with the upward continu-
ation term (R/r)l in the synthesis formula, if necessary.

If the maximum degreeL of the expansion is large enough,
expression Eq. (12) forms a “two-dimensional step function”

Figure 3. Sub-division in a longitude–latitude grid and a differen-
tial volume element of the sphere (Abedini et al., 2021a). In an al-
ternative interpretation, the figure illustrates a two-dimensional step
function on the sphere, which is either zero (white) outside and con-
stant but non-zero (grey) inside a mascon element.

on the sphere S (see Fig. 3), with

Hq (rP, t)=

{
Hq in the region of interest, i. e. Sq
0 outside.

(13)

A straightforward sub-division of a sphere is given by
a longitude–latitude grid, i.e. all boundaries are either
part of parallel circles or of meridians. In this case, the
integrals Eq. (11) have the differential surface element
d�= cosθdθdλ of the unit sphere, and the integration can be
obtained by recursion formulas of integrated Legendre func-
tions.

The size and shape of the surface elements vary between
the publications:

– Lemoine et al. (2007) and Rowlands et al. (2005)
present a separation of the region of interest into surface
elements of equal angles with the dimension 4◦× 4◦,
while Krogh (2011) defines patches of the dimensions
1.25◦× 1.5◦ and 1.5◦× 1.5◦.

– Equal areas within a longitude–latitude grid can be ob-
tained by stretching or shrinking one of the angles de-
pendent on latitude, which is discussed already in Mor-
rison (1971) and applied in experiments of Rowlands
et al. (2010) and Andrews et al. (2015).

– In Klosko et al. (2009), the surface elements have – at
least in the corresponding Fig. 4 – more complex bound-
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Figure 4. Definition of mascon surface elements in the Mississippi
basin. The figure originates from Klosko et al. (2009), but it is con-
verted to grey-scale for this article.

aries. The lines are still along parallel circles and merid-
ians, but they are combined in such a way that the mas-
con patches fill irregular shapes of sub-basins within the
Mississippi basin.

– In the CSR solution, the equal area per mascon is con-
sidered to be more relevant than a simple sub-division
or a complete coverage of the sphere (Save et al., 2016).
A geodesic grid with 40962 vertices is generated by it-
eration, and the mascon patches are located in the cen-
tres. The shapes of the patches are either hexagonal or
pentagonal, and the elements cover approximately equal
areas of around 1◦ diameter.

The regularisation techniques for equiangular patches are
discussed in Abedini et al. (2021b) for other types of mas-
cons, but the final recommendation to consider herein the
area size should be transferable to the lumped spherical har-
monic approach as well.

Observation of GRACE

The mascons were introduced for analysing the Earth’s grav-
ity field in the mission GRACE (Gravity Recovery And Cli-
mate Experiment). The mission consisted of two identical
satellites, which were launched in 2002 in a cooperation be-
tween NASA/JPL and the German DLR. The satellites fell
around the Earth in one common and almost circular orbit,
with a low altitude of originally 500 km in height. The po-
sitions were quasi-permanently observed by GPS receivers
with three antennas, and onboard accelerometers with three
axes were measuring the combined influence of all non-
gravitational effects. The main observable was the variation
of the distance between the two GRACE satellites, measured
by microwaves in the K-band and Ka-band via a range-rate
measurement system. The distance of ρ ≈ 250 km between
the satellite centres varied due to mass variations below, and
the K-band provided a nominal accuracy of 10 µm for the

range ρ and 0.5 µm s−1 for the range-rate ρ̇ (Seeber, 2003;
Tapley et al., 2004).

The orbit observations and the gravity field parameters can
be linked in different ways – e.g. the variational equation,
the energy balance approach, the short arc approach or the
acceleration approach – which are sketched, for example, in
Liu (2008). The details are not in the focus of this work, but
most methods require the gradient of the gravitational poten-
tial again.

Gradient of the lumped spherical harmonic mascons

For the range-rate ρ̇ in the lumped harmonic approach, the
relationship is found in Luthcke et al. (2013) by the chain
rule

∂ρ̇

∂Hq
=

L∑
l=0

l∑
m=0

∂ρ̇

∂Cl,m

∂1C
q

l,m

∂Hq
+

∂ρ̇

∂Sl,m

∂1S
q

l,m

∂Hq
(14)

and analogously for range-acceleration ρ̈. The deriva-

tives
{
∂1C

q
l,m

∂Hq
,
∂1S

q
l,m

∂Hq

}
are straightforward, as the formulas

Eq. (11) are linear with respect to the surface density σq or
the water height Hq .

Properties

The lumped spherical harmonic approach is a representative
of the type B mascons.

+ The method is very easy to implement after a previous
analysis of the GRACE observations by spherical har-
monic functions.

+ After the determination of all delta Stokes coefficients,
all other field quantities can be calculated by standard
methods of spherical harmonic synthesis.

+ The required integration Eq. (11) can be solved by well-
known recursion formulas or by numerical quadrature.

− A high degree L of expansion might be required for
straight boundaries and constant values within the two-
dimensional step functions.

3.2 Spherical cap mascons

The planar disc mascon approach (in Sect. 2.4) is not satisfy-
ing from a geometrical view point, as most points within the
element are either above or below the spherical surface. This
can be avoided by introducing spherical caps instead of pla-
nar discs. Monthly solutions in terms of spherical cap mas-
cons are calculated at the JPL, and the details can be found
in Watkins et al. (2015).

To reduce the effort of quadrature for the gradient expres-
sion, a local mascon coordinate system is introduced for each
element by rotation, where the centre of the mascon is equal
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to the new North Pole of the system. The new coordinates are
the spherical distance γ and the azimuth ξ in the calculation
point. The potential is still based on the simple layer theory
leading to the integral

V q (rP)= R2σq

α∫
0

2π∫
0

dξ sinγ dγ
` (�,rP)

(15)

for the potential of a spherical cap, with

– V q (rP): gravitational potential per mascon in the local
mascon coordinate system (the over-bar is introduced
here to emphasise the rotated coordinate system);

– σq : product of the gravitational constantG and mass per
mascon mq divided by the area of the spherical cap, i.e.
σq =

Gmq

2π (1−cosα)R2 ;

– R: radius of the spherical reference model;

– `(�,rP): distance between calculation point rP =

(xP,yP,zP) and the points P = (x,y,z) in the spheri-
cal cap (in the original paper, the Euclidean distance is
noted down by d);

– α: radius of the spherical cap in radians.

Gradient of the spherical cap mascons

The gradient of the potential V q (rP) is calculated per mascon
and rotated at the end to the original coordinate system. The
iterated integration over the spherical distance and azimuth
is reduced to a single integral by expressing the azimuthal
component via elliptic integrals.

In the local mascon coordinate system, the gradient oper-
ator is of the form

∇V q =
(
∂V q
∂r
, 0, 1

r

∂V q
∂θ

)>
, (16)

where θ is the spherical distance between the calculation
point and the mascon centre. The formulas of the gradient
of a spherical cap are derived in an inter-office memorandum
at the JPL (R. Sunseri, unpublished data: Mass concentra-
tion modelled as a spherical cap 343R-11-00) – which is not
available to us – and the results are quoted by Watkins et al.
(2015):

∂Vq

∂r
=−σq t

3
(
I2

t
− cosθ · I1− sinθ · I3

)
1
r

∂Vq

∂θ
=−σq t

3 (sinθ · I1− cosθ · I3) , (17)

with the abbreviation t = R
r

and the three integrals
{I1,I2,I3}. The solution of the later ones requires complete

elliptic integrals – first kind E(k) and second kind K(k) –
and numerical integration in the spherical distance direction:

I1 =

∫
sinγ cosγ

[
m′

√
l′+ 1(l′+ 1)

E(k)
]

dγ

I2 =

∫
sinγ

[
m′

√
l′+ 1(l′+ 1)

E(k)
]

dγ

I3 =

∫
sinγ cosγ

m′
(
E(k)− (1− l′)K(k)

)
√
l′+ 1(l′+ 1)l′

dγ, (18)

with the auxiliary expressions

n= 1+ t2− 2t cosθ cosγ

m′ = 4/n3/2

l′ = 2t sinθ sinγ /n

k2
= 2l′/(l′+ 1). (19)

Properties

The mascon potential is calculated by quadrature, and analyt-
ical derivatives have been derived, which leads to a class A
mascon in the threefold scheme.

+ The two-dimensional quadrature for the gradients are re-
duced to a one-dimensional integration.

+ The calculation takes place only in the spatial domain and
avoids the truncation error of spherical harmonic syn-
thesis.

+ The surface elements have all the same shape, size and
area for each mascon.

− The surface elements do not cover the complete surface,
even in a global analysis.

− The model is singular for the potential and the gradient at
the location of the centre of the spherical cap.

− A straightforward implementation of the formulas
Eq. (19) also leads to an undefined expression when the
calculation point is identical to the centre of the spher-
ical cap. One finds then that t = 1 and θ = 0, and in
consequence l′ = 0/0. A solution might be given in the
unavailable inter-office memorandum.

3.3 Mascons via quadrature of the simple layer potential

To avoid truncation errors and aliasing into coefficients of
lower degree and order via the spherical harmonic expansion
Eq. (14), a complete numerical integration is suggested in
Abedini et al. (2021a, b). The potential is represented – in
our notation of Sect. 3 – by the formula

T (rP)=−G
∫∫
S

σ (�)
` (�,rP)

d� (20)
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and is evaluated by numerical quadrature when necessary.
The extra minus sign was likely introduced by the authors
due to non-geodetic literature, as physical textbooks often
use the definition r̈ =−∇V .

The derivatives of the range-rate ρ̇ with respect to the sur-
face density are quasi-decomposed by the chain rule

∂ρ̇

∂σq
=
∂ρ̇

∂X

∂X

∂σq
+
∂ρ̇

∂Ẋ

∂Ẋ

∂σq
(21)

into geometrical components
{
∂ρ̇
∂X
,
∂ρ̇

∂Ẋ

}
and dynamical com-

ponents
{
∂X
∂σq
, ∂Ẋ
∂σq

}
, with

– X =X2−X1: difference vector between the satellites’
centre positions;

– Ẋ = Ẋ2− Ẋ1: difference vector between the satellites’
centre velocities.

As the range-rate ρ̇ is calculated by ρ̇ = X>Ẋ
‖X‖

, the geomet-
rical components are known and can be differentiated with
respect to positions and velocities.

The dynamical components are determined by the varia-
tional equation

ξ̈ =
∂2

∂t2

{
∂X

∂σq

}
=∇

2U (X)
∂X

∂σq
+
∂∇T

∂σq
, (22)

withU = GM
‖rP‖

being the potential of the Kepler problem. The
equation is solved similarly to an orbit integration, with the
initial values ξ = 0 and ξ̇ = 0 for each arc, each satellite and
each mascon. The integration error is limited by applying
the method only to short arcs over the region of interest, e.g.
Greenland in Abedini et al. (2021a).

Properties

The approach does not fit into the threefold scheme.

+ The method avoids truncation errors and aliasing by inte-
gration in the spatial domain.

+ The surface elements cover the complete surface in a
global analysis.

− The potential and the gradient require numerical quadra-
ture.

− The variational equations lead to a high computational
burden, which is already admitted in Abedini et al.
(2021a).

4 Mascons as a post-processing tool

Since the successful GRACE mission, it is also possible to
observe the temporal variations of the gravity field. The stan-
dard output of these investigations are monthly solutions of

spherical harmonic coefficients, which are meanwhile com-
plemented by mascon solutions in the same time span by sev-
eral research centres.

The question arises whether it is possible to estimate local
variations from the spherical harmonic solutions by post pro-
cessing. This is of particular interest for the ice masses and
glaciers in Greenland, Antarctica and Alaska as well as for
the highly variable water masses in the large water basins,
which dominate the time-variable part of the gravity field.

The spherical harmonic functions have a global support,
which contradicts a regional analysis. Another problem is the
noise in the coefficients, which is overcome by filtering and
de-striping techniques at the cost of the spatial resolution. To
estimate regional mass changes, it can be helpful to deter-
mine an adequate field quantity by spherical harmonic syn-
thesis and to analyse this newly generated signal by another
base function with local support (Ran et al., 2018).

4.1 Spherical cap mascon as a post-processing tool

Schrama et al. (2014) use the term mascon for post process-
ing of a time series of Stokes coefficients

{
Cl,m(t),Sl,m(t)

}
.

The goal is the determination of local mass variations in the
ice shields and glaciers based on a time series of spherical
harmonic coefficients.

A long-term mean value
{
〈Cl,m〉, 〈Sl,m〉

}
per coefficient is

calculated and subtracted, and a Gauß-filter Wl
G in the spec-

tral domain is applied by multiplication with the Stokes co-
efficients. To represent the equivalent water height instead of
the potential, further standard factors are introduced:{
cw
l,m(t)
sw
l,m(t)

}
=
aeρe(2l+ 1)
3ρw

(
1+ k′l

)Wl
G
{
Cl,m(t)−〈Cl,m〉
Sl,m(t)−〈Sl,m〉

}
, (23)

with

– ae: equatorial radius of the ellipsoidal Earth;

– ρe: mean density of the Earth;

– ρw: density of water;

– k′l : Love numbers.

The spherical harmonic synthesis

h (λP,θP, t)=
L∑
l=0

l∑
m=0

P l,m (cosθP)

×

(
cw
l,m(t)cosmλP+ s

w
l,m(t) sinmλP

)
(24)

provides the mass variations with respect to a long-term
mean on a spherical surface. The equivalent water height
h(λP,θP, t) is then analysed by a set of localising base func-
tions

h (λP,θP, t)=
Q∑
q=1

αq (t)βq
(
ψq ,L,R

)
(25)
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via least-squares estimation and the determination of the
weights αq (t). Each base function βq (ψk,L,R) has the form

βq =

L∑
l=0

γl(R)P l(cosψq ) (26)

γl(R)=
1
2

R∫
0

P l(cosµ) sinµdµ, (27)

which is equivalent to a spherical cap with the radius R, the
maximum expansion degree L in the spectral domain and the
location (λq ,θq ) for its centre.

Properties

Original GRACE data are not required, as the method is ap-
plied to the previous solution by spherical harmonics, which
leads to type C mascons.

+ The estimation of the weights is a straightforward process
via least-squares estimation.

+ The surface elements all have the same shape, size and
area.

+ The required integration Eq. (27) can be solved by recur-
sion formulas or numerical quadrature.

− The effect of Gauß filtering and the temporal average on
the solution’s quality are difficult to predict; also, the
chosen sampling in the spherical harmonic synthesis
might have an effect on the estimated masses.

− The surface elements do not cover the complete surface,
even in a global analysis.

4.2 Point mass mascons as a post-processing tool

Ran (2017) and Ran et al. (2018) extend an idea of Baur and
Sneeuw (2011) by combining point masses and the simple
layer potential. The goal of the work is the estimation of mass
variations over Greenland based on spherical harmonic coef-
ficients. The GRACE solutions are used to derive the radial
component of the gradient but with loading compensation in
orbit altitude:

δg(rP)=−
∂V

∂r

=−
GM

r2
P

L∑
l=1

l+ 1
1+ k′l

(
a

rP

)l l∑
m=0

P l,m(cosθ )

×

(
1Cl,m cosmλP+1Sl,m sinmλP

)
. (28)

This signal is analysed – by least squares estimation of the
surface densities ρq – by the simple layer in the region of

interest:

δqP =−
∂

∂r

{
G

Q∑
q=1

ρq

∫∫
ds

`(�,rP)

}
=

=−
∂

∂r

{
G

Q∑
q=1

ρqIq,p

}
. (29)

The integral Iq,p is approximated by quadrature, which eval-
uates the distances only in the nodes of a grid:

Iq,p =

∫∫
ds

` (�,rP)
≈

Kq∑
j=1

wq,j
1

lq,j,p
, (30)

with

– wq,j = Si/Kq : weighting of the evaluated points;

– lq,j,p: distance between the nodes and the evaluation
point;

– Sq : the surface area of the mascon with the index q.

The Euclidean distance is expressed in spherical coordinates

lq,j,p =

√
r2
q,j + r

2
p − 2rq,j rp cos9q,j,p,

with

– rp = ‖rP‖: distance of calculation point to the origin;

– rq,j = ‖rq,j‖: distance of nodes within the patch to the
origin;

– 9q,j,p: angle between the vectors rq,j and rP.

The observable of the study is then given by

δqP ≈G

Q∑
q=1

ρq

Kq∑
j=1

wq,j

(
rq,j − rp cos9q,j,p

)
lq,j,p

3 . (31)

Properties

The method is applied to the previous solution by spherical
harmonics, which leads to type C mascons.

+ The method is very easy to implement.

+ Integration per mascon element is replaced by a weighted
sum of point masses located on a grid.

− The model is singular for potential and radial derivatives
at the location of the nodes.

− Finding the weighting wq,j = Si/Kq might be challeng-
ing for irregularly shaped patches.
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5 Summary – mascons in gravity field modelling

Point mass models are an important tool for gravity field
modelling due to their simplicity and efficiency. The point
mass representation is used for celestial bodies with irregu-
lar shapes but also for Earth or the Moon on regional and
global scales. Point mass mascons are also a key aspect of
converting spherical harmonic solutions into regional mass
variations, which supports the interpretation of geophysical
processes.

Mascons represented by finite surface elements are based
on the simple layer potential. These models form a subset of
localising base functions for gravity field modelling. With-
out neighbourhood conditions, a solution close to the ground
generates a discontinuous field. The discontinuity problem is
damped for higher evaluation altitude or small patches. The
constant density per mascon simplifies the interpretation of
mass variations in comparison to other localising base func-
tions (e.g. wavelets or Slepian functions), which vary within
their region of interest. Planar disc and spherical cap mascons
are radial symmetric base functions, while the other mascon
concepts allow for patches with arbitrary shapes. In partic-
ular, the shape can consider the geometry of water basins,
which reduces the leakage of signals in hydro-geodesy.
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