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Abstract. Tidal fluctuations in gravity will affect the period of a pendulum and hence the timekeeping of any
such clock that uses one. Since pendulum clocks were, until the 1940s, the best timekeepers available, there has
been interest in seeing if tidal effects could be observed in the best performing examples of these clocks. The
first such observation was in 1929, before gravity tides were measured with spring gravimeters; at the time of the
second (1940–1943), such gravimeters were still being developed. Subsequent observations, having been made
after pendulum clocks had ceased to be the best available timekeepers and after reliable gravimeter measurements
of tides, have been more of an indication of clock quality than a contribution to our knowledge of tides. This
paper describes the different measurements and revisits them in terms of our current knowledge of Earth tides.
Doing so shows that clock-based systems, though noisier than spring gravimeters, were an early form of an
absolute gravimeter that could indeed observe Earth tides.

1 Introduction

The invention of the pendulum clock by Christiaan Huygens
in 1657 tied precise time measurement and gravity together
for almost the next 3 centuries, until the development of
quartz and atomic frequency standards. Not only did Huy-
gens’ own research come from an investigation of how bod-
ies fall (Yoder, 1989) but also the first indication that grav-
itational acceleration differed from place to place on Earth
came from the finding, by Jean Richer in 1672, that a pen-
dulum beating seconds (frequency 0.5 Hz) at Paris needed
to be shortened by 0.3 % to do so at Cayenne, just north of
the Equator (Olmsted, 1942). Some later measurements of
gravity made direct use of clocks or otherwise driven pen-
dula (Graham and Campbell, 1733; Mason and Dixon, 1768;
Phipps, 1774; Sabine, 1821), though more usually, and es-
pecially after the work of Kater (1818, 1819), almost all
measurements of gravity relied on freely swinging pendula
(Lenzen and Multhauf, 1965). In a few cases these pendula
were used to measure acceleration absolutely (Cook, 1965),
but more usually their frequency was compared either to a
local clock or to a reference pendulum at another location
(Bullard and Jolly, 1936).

The purpose of this note is to describe the few cases in
which pendulum clocks have been used to measure tempo-
ral changes in gravity at a fixed location, specifically the
changes in the intensity of gravity g caused by the tidal ef-
fects created by the Moon and Sun (Agnew, 2015). It might
be thought that these changes, being at most 10−7 of the to-
tal gravitational acceleration, would be too small to measure
and also that they could not be measured without a time stan-
dard unaffected by gravity. While the second point is true, the
first is not: I have identified four occasions on which clocks
have had timekeeping stability good enough that they have
detected tidal gravity changes. The first occasion is of in-
terest as being, I believe, also the first measurement of tidal
changes in gravity, while the second helped to determine the
Love numbers. The other two, having been made after the
development of precise tidal gravimeters using a mass on a
spring, are not of great geophysical import but do serve to
show what kind of pendulum clock could measure the tides,
sometimes very clearly, as in Fig. 1, which shows the time er-
ror from a clock discussed more fully in Sect. 6. Getting this
kind of performance from a pendulum clock is anything but
easy (Woodward, 1995; Matthys, 2004), so it is interesting to
see how it has been done.

Published by Copernicus Publications.



216 D. C. Agnew: Time and tide

Figure 1. Time error of a free pendulum from a Shortt clock,
driven by an optical, electronic and mechanical system designed by
Pierre Boucheron. A steady rate of −15.38× 10−3 s d−1 has been
removed. Inset (b) in (a) shows part of the record in more detail,
and (c) the data are shown after removing low frequencies. In all
cases a residual after subtracting the theoretical gravity tide (con-
verted to pendulum frequency and integrated) is shown slightly be-
low the data.

2 The first theoretical treatment, 1928

The effect of tides on pendulum clocks appears to have first
been examined by Jeffreys (1928), following a suggestion by
the amateur horologist Clement O. Bartrum. He also exam-
ined the variations in Earth’s rate of rotation caused by the
long-period tides, something not detectable without better
measurements of both time and Earth orientation. Harold Jef-
ferys’ response combined the astronomical expressions for
the tides with the response of a clock; it is simpler to start
with how changes in gravity affect timekeeping and then use
the harmonic description of the tides.

With a few (and very imprecise) exceptions, all clocks de-
pend on an oscillator with some frequency f (t), which is
converted to phase (e.g., the position of a clock hand on its
dial) according to

φ =

T∫
0

f (t)dt,

which in turn is converted to time by the assumed frequency
of the oscillator f0 to give a measured time Tm:

Tm =
φ

f0
=

T∫
0

f (t)
f0

dt

so that if f (t)= f0, Tm is the true time T . If, however, there
is a frequency error fe(t)= f (t)− f0, there will be a corre-
sponding error in phase φ, which in horological terms means
a time error:

Te = Tm− T =

T∫
0

fe(t)
f0

dt. (1)

Clock performance can thus be described in terms of
fractional-frequency error fe(t)/f0, known in horology as
the rate and usually expressed in seconds per day. For pendu-
lum clocks it is difficult to measure this with high accuracy,
and in all the cases described here the actual measurement
was of Te(t), given by Eq. (1), from which an average of
fe(t)/f0 can be found for some interval of observation.

The frequency of a pendulum is given, for small arcs of
swing, by

f =
1

2π

√
l

g

(
1− θ2/16

)
, (2)

where g is the gravitational acceleration, l the length of the
equivalent simple pendulum (with all mass at a point) and
2θ is the total arc of swing (Baker and Blackburn, 2005).
Typically θ is less than 1◦, or 0.02 rad, so the term in θ2 may
be disregarded for finding the derivative needed. This is the
partial derivative of fe/f0,

1
f0

∂f

∂g
=
−1
2

√
g

l

√
l

g2 =
−1
2g
, (3)

so that fe(t)/f0 = gc(t)/2g, where gc(t) is the time-variable
part of gravity and g is its average value.

A sense of the tidal effects is best gotten by using a har-
monic expansion of the tide and looking at individual har-
monics. This can be done using Eqs. (7), (8), (11) and (18)
of Agnew (2015); note that Eq. (18) is missing a factor of 2.
The fractional change in pendulum frequency from a tidal
harmonic of amplitude A, frequency ζ and phase α is

δf

f0
=
δg

2g
=
δnAge

aeg
Nm
n P

m
n (cosϕ)

[
cos(2πζ t +α)cos(mλ)

+ sin(2πζ t +α) sin(mλ)
]
, (4)

where n and m are the degree and order of the tide; for
the tides considered here, n= 2. The other variables are
ae (Earth’s equatorial radius), ge (gravitational acceleration
there), g (local gravitational acceleration), δn (gravimetric
factor), Nm

n (normalization coefficient) and Pmn (associated
Legendre polynomial). The location is given by the colati-
tude ϕ and longitude λ. For n= 2 the gravimetric factor is
given by δ2 = 1+h2− 1.5k2, where h2 and k2 are the Love
numbers for vertical displacement and potential change. For
the Preliminary Reference Earth Model, δ2 = 1.1562.
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Table 1. Largest tides affecting pendulum clocks.

Name Period Amplitude Latitude
(days) (10−3 s) dependence

N 6798.097 149.209 3cos2ϕ− 1
Sa 365.257 1.413 3cos2ϕ− 1
Ssa 182.622 4.447 3cos2ϕ− 1
Sta 121.749 0.173 3cos2ϕ− 1
Msm 31.812 0.168 3cos2ϕ− 1
Mm 27.555 0.762 3cos2ϕ− 1
Mf 13.661 0.715 3cos2ϕ− 1
Q1 1.120 0.108 sinϕ cosϕ
O1 1.076 0.543 sinϕ cosϕ
P1 1.003 0.235 sinϕ cosϕ
K1 0.997 0.707 sinϕ cosϕ
M2 0.518 0.315 sin2ϕ

S2 0.500 0.141 sin2ϕ

Taking the integral of Eq. (4) gives, for the time-
independent amplitude,

δn

2πζ
Age

aeg
Nm
n P

m
n (cosϕ). (5)

Letting g = ge for simplicity, Table 1 gives the resulting val-
ues for the largest tidal harmonics (all those with amplitudes
more than 10−4 s). The largest harmonic by far is that as-
sociated with the nodal tide (period of 18.6 years). All of
the diurnal and semidiurnal tides have amplitudes less than a
millisecond.

Jeffreys (1928) obtained similar results; perhaps because
of a mistake in normalization, the final amplitudes he gave
for the tidal harmonics of Te are about 1.4 times those in
Table 1. He stated that while the long-period effects are the
largest, their detection would require a level of long-term sta-
bility not seen in pendulum clocks and described the shorter-
term changes as “within the limits of error of the most accu-
rate time-measurements, but perhaps not so far within them
as to be entirely devoid of interest”.

One further point can be made about tidal measurements
with pendula. Equation (3) means changes in g can be in-
ferred from changes in f directly: the scale factor from frac-
tional frequency to gravity is just 2g, which can easily be
determined to a precision and accuracy of 10−4. Since the
pendulum is a kind of falling-weight measurement, it is not
surprising that it provides a measure of changes in g that can
be tied back to standards of length and time. This is not at
all the case with spring gravimeters, the calibration of which
was difficult until portable and highly precise free-fall abso-
lute gravimeters were developed. It is now routine to use ab-
solute gravimeters to check the drift and scale factor of spring
gravimeters intended for tidal measurements (Hinderer et al.,
2007). But a pendulum that can record the tides needs no
calibration.

3 A first detection in 1929: Shortt–Synchronome
clock

As noted above, it is not possible to measure the effects of
gravity tides on pendulum clocks without another clock that
is not affected by gravity. No such clock of adequate accuracy
existed until the 1920s, when electronically maintained os-
cillators such as tuning forks and quartz crystals were devel-
oped. The first quartz-crystal clock was developed by War-
ren Marrison in 1927 (Katzir, 2016); very soon after (1929) it
was used for the study of pendulum clocks. This project was
initiated (and funded) by Alfred L. Loomis (Conant, 2002),
who turned to various scientific investigations after a very
successful legal and financial career had brought him great
wealth.

Loomis’ study of pendulum clocks comprised three el-
ements (Loomis, 1931). The first was an electrical signal
maintained at 1000 Hz by the quartz oscillator operated by
Marrison at Bell Telephone Laboratory in Manhattan and
provided (over a dedicated telephone line) to Loomis’ pri-
vate laboratory, 65 km away in Tuxedo Park (41.1835◦ N,
74.2144◦W). The second was three of the highest-quality
pendulum clocks then available, the Shortt–Synchronome
clock (described below). The third was a chronograph de-
veloped by Loomis, which used a rotating arm driven by
the 1000 Hz signal at 10 revolutions per second, which could
cause a spark to burn a hole in a slowly moving paper record
whenever a signal was received. The least count of this sys-
tem (to use the current term) was 10−3 s; signals from the
three Shortt–Synchronome clocks were recorded every 30 s,
and changes between them or between them and the quartz
oscillator could easily be monitored.

Shortt–Synchronome clocks will appear three times in this
account, so a brief description of them is appropriate; much
more detail is available in Hope-Jones (1940) and Miles
(2019), though the most accessible description is given by
Woodward (1995). The double name reflects the nature of
these clocks, which consisted of a pair of pendulum sys-
tems. One was the Synchronome, an electromechanical clock
manufactured by the company of that name to serve as a
controller of many subsidiary clocks, sending out signals at
regular intervals. The other pendulum, designed by engineer
William H. Shortt, was the heart of the system: it swung
freely in a container evacuated to a pressure of 3 kPa. The
only exception to its free motion was that every 30 s, in re-
sponse to a signal from the Synchronome clock, a pivoted
lever was lowered onto a small wheel attached to the Shortt
pendulum. As the pendulum swung away from the lever, the
lever fell off the wheel, applying a slight horizontal force to
the pendulum; in horological terminology, this is called im-
pulsing the pendulum. The lever’s fall was arrested by con-
tact with a switch which performed two actions: it caused the
lever to be raised and reset, ready for the next 30 s signal, and
it actuated a mechanism to speed up the Synchronome clock
if it had fallen behind, which it was deliberately designed to
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do. So the Shortt free pendulum controlled the overall time-
keeping but did so in a way that involved minimal interaction
with the Synchronome clock, thus approximating as much as
possible a completely free and undamped pendulum – and
thanks to the evacuation of the pendulum chamber, theQ fac-
tor of the free pendulum was approximately 105.

Loomis supported not just the measurements but also the
associated data analysis, conducted by Ernest W. Brown
(developer of lunar theory) and his student Dirk Brouwer
(Brown and Brouwer, 1931), with, as was usual in those
days, “a large amount of calculation, most of which was per-
formed by Mrs. D. Brouwer.” Of the various results, the one
of interest for this paper was the effort to look for a lunar ef-
fect in the difference between the pendulum and quartz time-
keeping. This was done by using a form of stacking of the
data (Brown, 1915). The values were taken at hourly inter-
vals and each was assigned to the nearest “lunar hour”: that
is, 0.04167 of the lunar day of 24.83 h. All values for a partic-
ular lunar hour were summed and averaged. This procedure,
viewed as a digital filter, has a response close to one at mul-
tiples of the M1 tidal frequency of 0.9664463 cycles d−1 and
so should mostly show the effect of the M2 tide.

Figure 2 shows the results plotted in Fig. 3 of Brown and
Brouwer (1931), specifically the result of an analysis of 147 d
of data of the difference between one of the Shortt clocks
(since it was denoted as “Clock 1”, it was probably serial
number 20) and the quartz frequency standard. As would be
expected, a similar analysis of the three pendulum clocks rel-
ative to each other did not show any clear variation. Fitting
sinusoids with frequencies of 1 and 2 cycles per lunar day re-
moves all of the variation; the diurnal sinusoid has an ampli-
tude of 0.097× 10−3 s with a phase of 178◦; the semidiurnal
sinusoid has an amplitude of 0.161× 10−3 s with a phase of
166◦.

Brown and Brouwer (1931) noted that the variation was
approximately that expected on a rigid Earth, something they
found puzzling because of their mistaken idea that gravity
variations on an elastic Earth would be 1+h+k = 1.87 times
the rigid-Earth variations. They attempted to explain their ob-
servation by a large ocean-loading effect but seem to have
decided that their results were inconclusive.

In order to re-evaluate their results, I produced a simu-
lation of the tidal time changes at this location and time,
using the “SPOTL” (Some Programs for Ocean-Tide Load-
ing) package (Agnew, 2012); ocean loading was computed
from the TPXO7.2 global model and the OSU (Oregon State
University) local model for eastern North America, though
this loading turns out to alter the predicted time by less
than 5 %. Figure 2 also shows the result of an analysis of
this predicted tide done by averaging values assigned to the
same lunar hour. The two series appear similar; again fit-
ting two sinusoids, the diurnal sinusoid has an amplitude of
0.023× 10−3 s with a phase of −161◦ not in agreement with
the fit to the data. But the semidiurnal sinusoid has an ampli-
tude of 0.178× 10−3 s with a phase of 170◦, which is to say

Figure 2. Analysis and simulation of a 147 d record of relative time
between a Shortt–Synchronome clock and a quartz frequency ref-
erence. The black line with pluses shows the stacked results from
Brown and Brouwer (1931); the red line with filled circles shows a
least-squares fit to this of two sinusoids; the blue line with crosses
shows the residual from that fit; and the green line with triangles
shows the results of a similar analysis of the theoretical tide for this
location and time period. Please note that the date format used in
the figure is year:day of year:solar hour.

10 % larger and almost exactly in phase with the analyzed
data. Given the quality of the measurements, this is excellent
agreement.

So these pendulum clocks were able to detect and accu-
rately measure tidal changes in the amplitude of gravitational
acceleration g. At this time almost all Earth tide measure-
ments were of tilt, which is to say changes in the direction
of gravity. Lambert (1931) does not mention any observa-
tions of tidal changes in g, while Lambert (1940) describes
only some measurements made in the US in 1938–1939. The
first successful observation of tidal changes in g that I have
found is that by Tomaschek and Schaffernicht (1932), who
showed a few days of data and analyzed 2 months worth, but
they would appear to have had a calibration problem, since
their result for δ was 0.64, 55 % of the true value. As noted
in Sect. 2, pendulum measurements are free from calibration
uncertainties.

4 Collective measurements 1940–1943: an
ensemble of clocks

The next attempt to measure tidal effects with pendulum
clocks was by Stoyko (1949) and explicitly aimed at us-
ing tidal gravity to determine δ, which when combined with
tidal tilt measurements could provide values for the two Love
numbers h and k. The measurements were made at the Paris
Observatory (48.8364◦ N, 2.3365◦ E), a good choice in two
ways. First of all, it was the location of the Bureau Interna-
tionale de l’Heure (BIH), the entity responsible for defining
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a unified time system by determining corrections (after the
fact) to the time signals broadcast by different countries and
based on timekeeping from different observatories. Broad-
cast time signals showed unexpectedly large deviations be-
tween different timekeepers, and the BIH was established to
deal with this (Kershaw, 2019). Given this mandate, the BIH
maintained a relatively large ensemble of clocks. These were
housed in a vault at 23 m depth, much deeper than most other
timekeepers, a setting where even annual variations in tem-
perature would be small and ground noise would be attenu-
ated.

In looking for tides, six of the BIH clocks were used. One
was a Shortt–Synchronome clock (number 44), while four
were precision pendulum clocks built by the French firm of
Leroy et Cie (Roberts, 2004). These were as simple as the
Shortt–Synchronome clock was complex: a single pendu-
lum driven by an escapement that used springs to provide
a nearly invariant impulse to the pendulum (Martin, 2003),
only two wheels in the gear train and a gravity drive us-
ing a 7 g weight electrically rewound every 30 s. As in the
Shortt–Synchronome clock, the pendulum operated inside a
sealed tank, though at a pressure (80 kPa) not far below atmo-
spheric. The sixth timekeeper was a tuning-fork frequency
standard built by the electronics firm of Belin.

The differences between these timekeepers was recorded
twice daily, at 08:10:30 and 20:10:30 universal time, on a
high-speed chronograph, recording on paper at 0.25 m s−1.
These 12 h samples were then (in today’s terms) convolved
with a high-pass filter with weights (1, −3, 3, −1) (remov-
ing any constant, linear or quadratic behavior) and then, it
appears, analyzed as daily samples. The Nyquist frequency
was thus reduced to 0.5 cycles d−1, so the M2 tide would
have been aliased to a period of 14.7 d, while the K1 and
P1 harmonics would both have been aliased to a frequency of
1 cycle per year. Monthly means were created, with an an-
nual variation fit to them to determine the size of these diur-
nal tides. For the M2 tide each difference was assigned to the
nearest lunar hour, and a year of these was summed. Com-
parison with equivalently processed rigid-Earth tides then al-
lowed the gravimetric factor δ to be found for each year from
1940 through 1943.

Figure 3 shows the values of δ (normalized against what
we now know is the true value) determined for the five clocks
over 4 years for both the K1−P1 and M2 tides. While there
is a great deal of scatter, the median value of the normalized δ
is 1.05. It is notable that the scatter of the estimates increases
for the last 2 years compared to the first 2 years: given that
Paris was under German occupation, it can easily be imag-
ined that replacement parts for delicate instruments of this
kind might have been difficult to get. But these results, at the
time they were published, were not drastically worse than
what had been attained by gravimeter measurements. It does
not appear that the Leroy clocks were significantly worse at
measuring tides than the Shortt–Synchronome clock, though

Figure 3. Results for the tidal gravimetric factor obtained by dif-
ferent clocks and analyses in Paris between 1940 and 1943. The cir-
cles indicate the results from the Shortt–Synchronome clock, and
the pluses show the results from the Leroy clocks.

it is likely that the extremely stable environment they were
operated in played a part in allowing this.

5 Improved measurements in the 1960s: Fedchenko

While quartz clocks became the best measurers of time in the
1940s, pendulum clocks remained popular in some settings,
since they did not require specialized electronics expertise to
maintain. Judging by the sales of the Shortt–Synchronome
clocks, this was particularly the case in Communist coun-
tries: of the 31 such clocks sold after 1945 (Miles, 2019), 19
went to the People’s Republic of China, eastern Europe or the
Soviet Union (USSR). Indeed, the USSR built its own ver-
sion of the Shortt–Synchronome clock, the “Etalon” clocks
(Roberts, 2004). And in addition, the USSR introduced and
manufactured an alternate design of pendulum clock, one
very different from the Shortt–Synchronome clock.

These clocks were invented by Feo-
dosii Mikhailovich Fedchenko; Feinstein (2004) is the
fullest English-language description. Three models were
produced, the AchF-1, AchF-2 and AchF-3, all of which
used a pendulum suspension that removed the θ2 term in
the frequency expression given in Eq. (2). This term exists
because the restoring force on a pendulum varies as sinθ
rather than θ , creating a slightly nonlinear system in which
the frequency depends on the amplitude of swing. From
Eq. (2), the dependence of a normalized frequency on the
angle of swing is

1
f0

∂f

∂θ
=
θ

8
,

which, for a typical arc of swing of 1◦ = 1.75× 10−2 rad, is
2.18× 10−3. So a variation of fractional frequency of 10−8

would be produced by a fractional change in arc of approxi-
mately 5× 10−6.
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For small arcs, the change in height of the bob is propor-
tional to the square of the arc, so the arc is approximately pro-
portional to the square root of the energy of the pendulum. In
a steady state, this energy is proportional to the energy input,
so a frequency change of 10−8 would be created by a frac-
tional change in energy input of 2× 10−3, a stability that is
difficult to achieve. Fedchenko’s accomplishment was to de-
vise a method for eliminating the θ2 term in Eq. (2), making
the pendulum what is termed isochronous. He accomplished
this by suspending the pendulum from three steel strips, with
one longer than the other two; this created an additional elas-
tic restoring force that could be adjusted to cancel the θ2 term
(Woodward, 1999). While there had been earlier proposals
for elastic devices to make a pendulum isochronous (Phillips,
1891, 1892; Bush and Jackson, 1951), Fedchenko’s seems to
have been the only one to see actual use.

The pendulum of the AchF-3 swung in a low vacuum
(0.4 kPa); its position was sensed, and a force was applied to
it electromagnetically. Permanent magnets were mounted on
the pendulum and passed through a pair of coils at the bottom
of its arc. These coils were fixed to a rod that would expand
and contract with temperature in parallel with the pendulum,
keeping the geometry of the magnet-coil system unchanged.
As the magnets moved past the coils, they generated a volt-
age in one coil, and on alternate swings this voltage was ap-
plied to a two-stage transistor amplifier that produced a cur-
rent in the second coil in the opposite sense to that induced in
the first, applying a small force to the pendulum. The ampli-
fier in this feedback system was driven by a small constant-
voltage battery: the power consumption was about 60 µW.

The best evidence for the detection of tidal fluctuations
of this clock comes from Agaletskii et al. (1970); the se-
nior author was a metrologist with an interest in absolute
measurements of g (Cook, 1965), who wished to present
the clock as a direct measurement of the tidal fluctua-
tions that would affect any determination of g. The data
were collected at the All-Union Scientific Research Insti-
tute for Physical-Engineering and Radiotechnical Metrology
in Mendeleyevo, outside of Moscow (56.038◦ N, 37.232◦ E).
A total of 6 months of records were shown for September
through December of 1968 and 1969. The data curves are
clearly hand-drawn. Agaletskii et al. (1970) state that it was
not until after 6 months of “hunting” by the feedback mecha-
nism that the rate became steady; this was probably because
of the high Q of the pendulum, probably several times 105

(Bateman, 1977).
Figure 4 shows the data from the clock: the tides are

clearly visible. I again computed the theoretical tide for this
location using SPOTL and shifted the time of observations by
subtracting 3 h to go from Moscow to Universal Time. Sub-
tracting this from the data produces a series with a noticeably
lower variance. Shifting the times further (1.25 more hours
for the 1968 data and 1.75 more hours for the 1969 data)
produces the lowest variance and the least amount of visible
tidal signal in the residual: this is an acceptable adjustment,

Figure 4. Rates of the Fedchenko clock over a 3-month period in
1968 (a) and 1969 (b). Rates were determined by time differences
with an atomic clock over 2 h intervals and hand-plotted. In (a) the
uppermost trace is the point cloud produced by an image-processing
digitization of the plotted data; scales were determined against tic
marks in the original plot. The trace below is the theoretical tide
at the times of each point, and the one below that is the residual
from subtracting them. The bottom trace is the residual when the
theoretical tides are fit to the observed, allowing for a scaling factor.
Panel (b), for 1969, shows only the original data and the residual.

given the crudeness in digitizing a hand-drawn curve. Allow-
ing for a scale factor between the theoretical tides and the ob-
servations produces a factor of 0.9 for both years. Clearly the
clock data measure the diurnal and semidiurnal tides. Alex-
eev and Kolosnitsyn (1994) used these data and a longer set
of daily data to show that the Mf tide could also be detected.

6 Digital data in 1984: Shortt–Boucheron

The final measurement discussed here returns to the Shortt–
Synchronome clock, only without the Synchronome. In
1932, Shortt–Synchronome serial number 41 was installed in
the U.S. Naval Observatory (USNO; 38.922◦ N, 77.067◦W)
as a sidereal time standard: that is, a clock that could be di-
rectly compared with astronomical observations. By 1946,
all pendulum clocks at USNO had been replaced by quartz-
crystal clocks (Sollenberger and Mikesell, 1945) but were
left in the specially built clock vault (Dick, 2003). Almost
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40 years later, Pierre Boucheron, an engineer and amateur
horologist, visited USNO to look for information on their
clocks’ performance. While there, he visited the clock vault
and found that the original Shortt pendulum for number 41
was there and still under vacuum; he also found that a mirror
had been attached to the pendulum and an optical-flat win-
dow had been installed in the bell jar that was the top part
of the vacuum enclosure. With USNO’s permission, he set
up an optical lever to measure the pendulum’s motion, send-
ing current from a photocell to some simple logic circuits
that, every 30 s, dropped the impulsing lever just as the Syn-
chronome had. A second photocell sent timing pulses to a
counter which was read every hour and compared with the
USNO atomic master clock (Boucheron, 1985). Boucheron
called this system, like the Synchronome part of the Shortt–
Synchronome clock, a “slave” system; but unlike the Syn-
chronome, it did not have any timekeeping ability, and the
position of the Shortt pendulum was used directly to release
the impulse lever. As Boucheron pointed out, the optical-
sensing system probably had less variability in sensing the
time of swing than the electromechanical switches and con-
tacts of the Shortt–Synchronome clock.

This system operated for just under a year, from 1984:292
(year:day of year) through 1985:278. Boucheron (1986,
1987) described the clock’s performance. As a timekeeper
it was poorer than might be expected, showing variations of
up to 1.5 s over the course of the year. But the clock’s short-
term stability was good enough that Earth tides were visible
in plots of the hourly rate. Boucheron (1987) discussed the
tidal response in more detail, although his analysis did not
go much beyond that of Brown and Brouwer (1931).

These data were transcribed by Philip Woodward in order
to perform a spectral analysis (Woodward, 1995); in keep-
ing with earlier results (and standard horological practice)
he differenced the times to produce hourly rates. Machine-
readable hourly rate data are available over the full span of
observation; the time differences plotted in Fig. 1 are avail-
able only for the first 3 months. Again, to compare rates with
the tidal fluctuations I computed the theoretical gravity tide
using SPOTL; here too the ocean load tide does not have a
large effect. Parallel harmonic analyses of the gravity signal
and the hourly rates give, for the major tides, the complex
value of the ratio of observed to theoretical tides (the admit-
tance).

Table 2 gives the results for the larger tidal harmonics. Ex-
cept for M2, all the admittance amplitudes are a few percent
below one, with phase differences scattered about zero. A 2◦

phase shift is the same magnitude as a 4 % change in am-
plitude, so it is reasonable to believe that this scatter comes
from background noise at the tidal frequencies.

To determine this noise level I computed the power spec-
tral density of the rate data in two ways. First, I computed
the periodogram of the data: that is, computing the discrete
Fourier transform and finding the amplitude at each fre-
quency. While this estimate of the PSD (power spectral den-

Figure 5. Power spectra of fractional-frequency changes in the
Shortt clock as modified by Boucheron and the Fedchenko clock.
For the Shortt clock, the spectrum is computed for a periodogram
(red); this includes tides but is not shown for all frequencies. The
blue, green and purple lines are estimates for the same spectrum
done using an adaptive spectrum estimation method, for different
values of the relative weighting of local bias and spectral stability.
The black dashed line is an “eyeball fit” to the spectrum, plotted
in gray when it is extrapolated. The spectra for the two 3-month
spans of detided Fedchenko data (Fig. 4) are shown in brown. The
black dotted line represents the noise level of a LaCoste & Romberg
Earth tide gravimeter (Slichter et al., 1964), from data collected in
1961–1963 (LCR-ET6). See the text for additional information.

sity) can be biased and is always inconsistent (in the statisti-
cal sense), it is the best way to show narrowband signals such
as the tide.

Fitting tidal harmonics to the data leaves no tidal lines vis-
ible in the periodogram, which means that more averaging
of the spectral estimates is appropriate. The second set of
spectrum estimates were found using the adaptive multitaper
method described by Barbour and Parker (2013). This min-
imizes a combination of the local bias caused by curvature
of the power spectrum and the uncertainty of the estimates.
The relative weighting of these two components of spectral
error is adjustable, and Fig. 5 shows the spectrum for three
different values of the parameter. As less weight is given to
minimizing local bias, the spectrum becomes less smooth; in
this case the main effect is to reduce bias at the very lowest
frequencies.

Along with the tides, the spectra show several peaks at pe-
riods around 2.8 to 3.5 h, which are clearest in the multitaper
estimate. These periods are much longer than the period of
the gravest normal mode, which itself is far too small to be
visible in these data. The source of these spectral peaks is
not understood but is assumed to be some irregularity in the
mechanical system that drives the pendulum. Loomis (1931)
noted that each of his clocks showed a characteristic pattern
of short-term variations.

The noise level of the Shortt–Boucheron clock can be de-
scribed by a PSD which varies as a power of frequency f β

over three different frequency bands. For frequencies less
than 4× 10−6 Hz (periods longer than 70 h), the exponent
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Table 2. Ratio of observed to model tides. The admittance amplitude is relative to the theoretical value of tidal change in pendulum frequency,
assuming local gravity to be 9.8008 m2 s−1; the admittance phase is the difference in degrees, with lags being negative.

Tide Tidal admittance for Shortt 41 data

O1 P1 K1 N2 M2 S2 K2

Admittance 0.974 0.955 0.960 0.910 0.999 0.945 0.977
Phase (degrees) −1.3 0.0 −0.8 2.5 2.3 −1.1 8.2

of the power law is β =−1.9: essentially the same random-
walk behavior found by Woodward using the Allan variance
(see chap. 18 of Rawlings, 1993) and (though not identified
as such) by Greaves and Symms (1943). This behavior is un-
desirable because it diverges with time, and its integral, the
time error (what clocks are supposed to measure), diverges
even more rapidly. For periods from 70 to 28 h, β =−0.6,
which is close to flicker noise; for periods less than 28 h,
β = 0.2, which is close to white noise, though clearly in-
creasing with frequency. It is quite possible that this in-
crease (and the mystery peaks) comes from variations at even
shorter periods that appear to be at longer ones because of the
hourly sampling.

Figure 5 also shows the PSD of the two residual series
of the Fedchenko data, plotted in Fig. 4. To obtain the equis-
paced data needed for these spectra, a local regression (loess)
was done on the point cloud, and the results linearly interpo-
lated to a 0.05 d interval, which is comparable to the origi-
nal 2 h spacing. I estimated the PSD using the same adaptive
method; given that the series was derived from hand-plotted
data, the true PSD is very likely below the ones shown. It
is clear that the Fedchenko clock, in this frequency band, is
definitely less noisy than the Shortt–Boucheron system.

7 Conclusions

Despite the extreme difficulty of making clock pendula re-
spond only to changes in gravity and nothing else, the best
pendulum clocks have shown the ability to detect tides, with
the first example preceding any gravimeter measurements.
And pendulum measurements, like other falling-mass sys-
tems, provide a result that is easily calibrated: the result
of Brown and Brouwer (1931), properly interpreted, would
have given an accurate value of the factor δ for the gravity
tides.

The observations reviewed here also make a horological
point, namely that there is more than one way for a pendulum
clock to have the performance demanded – something re-
cently demonstrated by the excellent performance of a clock
deliberately designed to make use of the nonlinear part of
Eq. (2) to compensate for environmental changes (McEvoy
and Betts, 2020).

The developers of the Shortt clock emphasized that it used
a free pendulum, which was only impulsed at longer intervals
and in a way that required no input from the pendulum. But

neither the Leroy nor the Fedchenko clock had this feature:
in both, the pendulum was used to time the impulse, and this
impulse was given frequently. It also does not seem to have
been necessary for the pendulum to swing in an evacuated
space, since the range of vacua in these clocks was from 0.4
to 80 kPa. The Littlemore clock of Hall (2004), built in the
1990s, aimed at improved performance by having an even
freer pendulum operating in a high vacuum (2×10−4 Pa) and
being impulsed electromagnetically. Though over 250 d its
timing error was within 50 ms, its short-term stability was
poor: a spectrum of the rate data, if plotted in Fig. 5, would
be a white spectrum at −88 dB.

While the first measurements of gravity tides were better
made by clocks than by gravimeters, the latter rapidly im-
proved, partly thanks to the stimulus of military and indus-
trial funding (Warner, 2005). Figure 5 shows a gravimeter
noise spectrum from 1962; at tidal frequencies this is compa-
rable to the best clock performance. Modern superconduct-
ing gravimeters have a much lower noise level: for fractional
gravity change, it is −155 dB for periods of 12 to 24 h, while
modern spring gravimeters are only about 6 dB noisier (Rosat
et al., 2004, 2015; Calvo et al., 2014).

So “tide from time” is now not at all the best measure-
ment of gravity changes but a signal that can demonstrate
good short-term oscillator performance. Horological mea-
surements of gravity span over 3 and a half centuries; even
though their utility is now gone, it has been an interesting
journey.
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